new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

CrackNex: a Few-shot Low-light Crack Segmentation Model Based on Retinex Theory for UAV Inspections

Routine visual inspections of concrete structures are imperative for upholding the safety and integrity of critical infrastructure. Such visual inspections sometimes happen under low-light conditions, e.g., checking for bridge health. Crack segmentation under such conditions is challenging due to the poor contrast between cracks and their surroundings. However, most deep learning methods are designed for well-illuminated crack images and hence their performance drops dramatically in low-light scenes. In addition, conventional approaches require many annotated low-light crack images which is time-consuming. In this paper, we address these challenges by proposing CrackNex, a framework that utilizes reflectance information based on Retinex Theory to help the model learn a unified illumination-invariant representation. Furthermore, we utilize few-shot segmentation to solve the inefficient training data problem. In CrackNex, both a support prototype and a reflectance prototype are extracted from the support set. Then, a prototype fusion module is designed to integrate the features from both prototypes. CrackNex outperforms the SOTA methods on multiple datasets. Additionally, we present the first benchmark dataset, LCSD, for low-light crack segmentation. LCSD consists of 102 well-illuminated crack images and 41 low-light crack images. The dataset and code are available at https://github.com/zy1296/CrackNex.

  • 4 authors
·
Mar 5, 2024

Assessing the value of Geo-Foundational Models for Flood Inundation Mapping: Benchmarking models for Sentinel-1, Sentinel-2, and Planetscope for end-users

Geo-Foundational Models (GFMs) enable fast and reliable extraction of spatiotemporal information from satellite imagery, improving flood inundation mapping by leveraging location and time embeddings. Despite their potential, it remains unclear whether GFMs outperform traditional models like U-Net. A systematic comparison across sensors and data availability scenarios is still lacking, which is an essential step to guide end-users in model selection. To address this, we evaluate three GFMs, Prithvi 2.0, Clay V1.5, DOFA, and UViT (a Prithvi variant), against TransNorm, U-Net, and Attention U-Net using PlanetScope, Sentinel-1, and Sentinel-2. We observe competitive performance among all GFMs, with only 2-5% variation between the best and worst models across sensors. Clay outperforms others on PlanetScope (0.79 mIoU) and Sentinel-2 (0.70), while Prithvi leads on Sentinel-1 (0.57). In leave-one-region-out cross-validation across five regions, Clay shows slightly better performance across all sensors (mIoU: 0.72(0.04), 0.66(0.07), 0.51(0.08)) compared to Prithvi (0.70(0.05), 0.64(0.09), 0.49(0.13)) and DOFA (0.67(0.07), 0.64(0.04), 0.49(0.09)) for PlanetScope, Sentinel-2, and Sentinel-1, respectively. Across all 19 sites, leave-one-region-out cross-validation reveals a 4% improvement by Clay compared to U-Net. Visual inspection highlights Clay's superior ability to retain fine details. Few-shot experiments show Clay achieves 0.64 mIoU on PlanetScope with just five training images, outperforming Prithvi (0.24) and DOFA (0.35). In terms of computational time, Clay is a better choice due to its smaller model size (26M parameters), making it ~3x faster than Prithvi (650M) and 2x faster than DOFA (410M). Contrary to previous findings, our results suggest GFMs offer small to moderate improvements in flood mapping accuracy at lower computational cost and labeling effort compared to traditional U-Net.

  • 4 authors
·
Nov 3, 2025

Combined Physics and Event Camera Simulator for Slip Detection

Robot manipulation is a common task in fields like industrial manufacturing. Detecting when objects slip from a robot's grasp is crucial for safe and reliable operation. Event cameras, which register pixel-level brightness changes at high temporal resolution (called ``events''), offer an elegant feature when mounted on a robot's end effector: since they only detect motion relative to their viewpoint, a properly grasped object produces no events, while a slipping object immediately triggers them. To research this feature, representative datasets are essential, both for analytic approaches and for training machine learning models. The majority of current research on slip detection with event-based data is done on real-world scenarios and manual data collection, as well as additional setups for data labeling. This can result in a significant increase in the time required for data collection, a lack of flexibility in scene setups, and a high level of complexity in the repetition of experiments. This paper presents a simulation pipeline for generating slip data using the described camera-gripper configuration in a robot arm, and demonstrates its effectiveness through initial data-driven experiments. The use of a simulator, once it is set up, has the potential to reduce the time spent on data collection, provide the ability to alter the setup at any time, simplify the process of repetition and the generation of arbitrarily large data sets. Two distinct datasets were created and validated through visual inspection and artificial neural networks (ANNs). Visual inspection confirmed photorealistic frame generation and accurate slip modeling, while three ANNs trained on this data achieved high validation accuracy and demonstrated good generalization capabilities on a separate test set, along with initial applicability to real-world data. Project page: https://github.com/tub-rip/event_slip

  • 3 authors
·
Mar 5, 2025

The Zwicky Transient Facility Bright Transient Survey. III. $\texttt{BTSbot}$: Automated Identification and Follow-up of Bright Transients with Deep Learning

The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (m_peak,leq,18.5,mag) extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual inspection ("scanning") to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past sim5 yr of ZTF operations. We present BTSbot, a multi-modal convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 25 extracted features. BTSbot is able to eliminate the need for daily human scanning by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates. BTSbot recovers all bright transients in our test split and performs on par with scanners in terms of identification speed (on average, sim1 hour quicker than scanners). We also find that BTSbot is not significantly impacted by any data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates. BTSbot has been integrated into Fritz and Kowalski, ZTF's first-party marshal and alert broker, and now sends automatic spectroscopic follow-up requests for the new transients it identifies. During the month of October 2023, BTSbot selected 296 sources in real-time, 93% of which were real extragalactic transients. With BTSbot and other automation tools, the BTS workflow has produced the first fully automatic end-to-end discovery and classification of a transient, representing a significant reduction in the human-time needed to scan. Future development has tremendous potential for creating similar models to identify and request follow-up observations for specific types of transients.

  • 13 authors
·
Jan 26, 2024

Towards Zero-Shot Anomaly Detection and Reasoning with Multimodal Large Language Models

Zero-Shot Anomaly Detection (ZSAD) is an emerging AD paradigm. Unlike the traditional unsupervised AD setting that requires a large number of normal samples to train a model, ZSAD is more practical for handling data-restricted real-world scenarios. Recently, Multimodal Large Language Models (MLLMs) have shown revolutionary reasoning capabilities in various vision tasks. However, the reasoning of image abnormalities remains underexplored due to the lack of corresponding datasets and benchmarks. To facilitate research in AD & reasoning, we establish the first visual instruction tuning dataset, Anomaly-Instruct-125k, and the evaluation benchmark, VisA-D&R. Through investigation with our benchmark, we reveal that current MLLMs like GPT-4o cannot accurately detect and describe fine-grained anomalous details in images. To address this, we propose Anomaly-OneVision (Anomaly-OV), the first specialist visual assistant for ZSAD and reasoning. Inspired by human behavior in visual inspection, Anomaly-OV leverages a Look-Twice Feature Matching (LTFM) mechanism to adaptively select and emphasize abnormal visual tokens. Extensive experiments demonstrate that Anomaly-OV achieves significant improvements over advanced generalist models in both detection and reasoning. Extensions to medical and 3D AD are provided for future study. The link to our project page: https://xujiacong.github.io/Anomaly-OV/

  • 5 authors
·
Feb 11, 2025

Rotation-invariant convolutional neural networks for galaxy morphology prediction

Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS) have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time-consuming and does not scale to large (gtrsim10^4) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and rotational symmetry. It was developed in the context of the Galaxy Challenge, an international competition to build the best model for morphology classification based on annotated images from the Galaxy Zoo project. For images with high agreement among the Galaxy Zoo participants, our model is able to reproduce their consensus with near-perfect accuracy (> 99%) for most questions. Confident model predictions are highly accurate, which makes the model suitable for filtering large collections of images and forwarding challenging images to experts for manual annotation. This approach greatly reduces the experts' workload without affecting accuracy. The application of these algorithms to larger sets of training data will be critical for analysing results from future surveys such as the LSST.

  • 3 authors
·
Mar 24, 2015

An Overall Real-Time Mechanism for Classification and Quality Evaluation of Rice

Rice is one of the most widely cultivated crops globally and has been developed into numerous varieties. The quality of rice during cultivation is primarily determined by its cultivar and characteristics. Traditionally, rice classification and quality assessment rely on manual visual inspection, a process that is both time-consuming and prone to errors. However, with advancements in machine vision technology, automating rice classification and quality evaluation based on its cultivar and characteristics has become increasingly feasible, enhancing both accuracy and efficiency. This study proposes a real-time evaluation mechanism for comprehensive rice grain assessment, integrating a one-stage object detection approach, a deep convolutional neural network, and traditional machine learning techniques. The proposed framework enables rice variety identification, grain completeness grading, and grain chalkiness evaluation. The rice grain dataset used in this study comprises approximately 20,000 images from six widely cultivated rice varieties in China. Experimental results demonstrate that the proposed mechanism achieves a mean average precision (mAP) of 99.14% in the object detection task and an accuracy of 97.89% in the classification task. Furthermore, the framework attains an average accuracy of 97.56% in grain completeness grading within the same rice variety, contributing to an effective quality evaluation system.

  • 6 authors
·
Feb 19, 2025

The Imaging Database for Epilepsy And Surgery (IDEAS)

Magnetic resonance imaging (MRI) is a crucial tool to identify brain abnormalities in a wide range of neurological disorders. In focal epilepsy MRI is used to identify structural cerebral abnormalities. For covert lesions, machine learning and artificial intelligence algorithms may improve lesion detection if abnormalities are not evident on visual inspection. The success of this approach depends on the volume and quality of training data. Herein, we release an open-source dataset of preprocessed MRI scans from 442 individuals with drug-refractory focal epilepsy who had neurosurgical resections, and detailed demographic information. The MRI scan data includes the preoperative 3D T1 and where available 3D FLAIR, as well as a manually inspected complete surface reconstruction and volumetric parcellations. Demographic information includes age, sex, age of onset of epilepsy, location of surgery, histopathology of resected specimen, occurrence and frequency of focal seizures with and without impairment of awareness, focal to bilateral tonic-clonic seizures, number of anti-seizure medications (ASMs) at time of surgery, and a total of 1764 patient years of post-surgical follow up. Crucially, we also include resection masks delineated from post-surgical imaging. To demonstrate the veracity of our data, we successfully replicated previous studies showing long-term outcomes of seizure freedom in the range of around 50%. Our imaging data replicates findings of group level atrophy in patients compared to controls. Resection locations in the cohort were predominantly in the temporal and frontal lobes. We envisage our dataset, shared openly with the community, will catalyse the development and application of computational methods in clinical neurology.

  • 15 authors
·
Jun 10, 2024

Better Understanding Differences in Attribution Methods via Systematic Evaluations

Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.

  • 3 authors
·
Mar 21, 2023

Asking like Socrates: Socrates helps VLMs understand remote sensing images

Recent multimodal reasoning models, inspired by DeepSeek-R1, have significantly advanced vision-language systems. However, in remote sensing (RS) tasks, we observe widespread pseudo reasoning: models narrate the process of reasoning rather than genuinely reason toward the correct answer based on visual evidence. We attribute this to the Glance Effect, where a single, coarse perception of large-scale RS imagery results in incomplete understanding and reasoning based on linguistic self-consistency instead of visual evidence. To address this, we propose RS-EoT (Remote Sensing Evidence-of-Thought), a language-driven, iterative visual evidence-seeking paradigm. To instill this paradigm, we propose SocraticAgent, a self-play multi-agent system that synthesizes reasoning traces via alternating cycles of reasoning and visual inspection. To enhance and generalize these patterns, we propose a two-stage progressive RL strategy: first, RL on fine-grained Grounding tasks to enhance RS-EoT capabilities, followed by RL on RS VQA to generalize to broader understanding scenarios. Experiments show RS-EoT achieves state-of-the-art performance on multiple RS VQA and grounding benchmarks. Analyses reveal clear iterative cycles of reasoning and evidence seeking, confirming RS-EoT mitigates the Glance Effect and enables genuine evidence-grounded reasoning. Our code, data, and models are available at https://geox-lab.github.io/Asking_like_Socrates

  • 12 authors
·
Nov 27, 2025 2

Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation

Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( sim0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.

  • 7 authors
·
Jun 19, 2025

Identification of Low Surface Brightness Tidal Features in Galaxies Using Convolutional Neural Networks

Faint tidal features around galaxies record their merger and interaction histories over cosmic time. Due to their low surface brightnesses and complex morphologies, existing automated methods struggle to detect such features and most work to date has heavily relied on visual inspection. This presents a major obstacle to quantitative study of tidal debris features in large statistical samples, and hence the ability to be able to use these features to advance understanding of the galaxy population as a whole. This paper uses convolutional neural networks (CNNs) with dropout and augmentation to identify galaxies in the CFHTLS-Wide Survey that have faint tidal features. Evaluating the performance of the CNNs against previously-published expert visual classifications, we find that our method achieves high (76%) completeness and low (20%) contamination, and also performs considerably better than other automated methods recently applied in the literature. We argue that CNNs offer a promising approach to effective automatic identification of low surface brightness tidal debris features in and around galaxies. When applied to forthcoming deep wide-field imaging surveys (e.g. LSST, Euclid), CNNs have the potential to provide a several order-of-magnitude increase in the sample size of morphologically-perturbed galaxies and thereby facilitate a much-anticipated revolution in terms of quantitative low surface brightness science.

  • 4 authors
·
Nov 28, 2018

SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model

The rapid advancement of generative models in creating highly realistic images poses substantial risks for misinformation dissemination. For instance, a synthetic image, when shared on social media, can mislead extensive audiences and erode trust in digital content, resulting in severe repercussions. Despite some progress, academia has not yet created a large and diversified deepfake detection dataset for social media, nor has it devised an effective solution to address this issue. In this paper, we introduce the Social media Image Detection dataSet (SID-Set), which offers three key advantages: (1) extensive volume, featuring 300K AI-generated/tampered and authentic images with comprehensive annotations, (2) broad diversity, encompassing fully synthetic and tampered images across various classes, and (3) elevated realism, with images that are predominantly indistinguishable from genuine ones through mere visual inspection. Furthermore, leveraging the exceptional capabilities of large multimodal models, we propose a new image deepfake detection, localization, and explanation framework, named SIDA (Social media Image Detection, localization, and explanation Assistant). SIDA not only discerns the authenticity of images, but also delineates tampered regions through mask prediction and provides textual explanations of the model's judgment criteria. Compared with state-of-the-art deepfake detection models on SID-Set and other benchmarks, extensive experiments demonstrate that SIDA achieves superior performance among diversified settings. The code, model, and dataset will be released.

  • 9 authors
·
Dec 5, 2024

DIP-R1: Deep Inspection and Perception with RL Looking Through and Understanding Complex Scenes

Multimodal Large Language Models (MLLMs) have demonstrated significant visual understanding capabilities, yet their fine-grained visual perception in complex real-world scenarios, such as densely crowded public areas, remains limited. Inspired by the recent success of reinforcement learning (RL) in both LLMs and MLLMs, in this paper, we explore how RL can enhance visual perception ability of MLLMs. Then we develop a novel RL-based framework, Deep Inspection and Perception with RL (DIP-R1) designed to enhance the visual perception capabilities of MLLMs, by comprehending complex scenes and looking through visual instances closely. DIP-R1 guides MLLMs through detailed inspection of visual scene via three simply designed rule-based reward modelings. First, we adopt a standard reasoning reward encouraging the model to include three step-by-step processes: 1) reasoning for understanding visual scenes, 2) observing for looking through interested but ambiguous regions, and 3) decision-making for predicting answer. Second, a variance-guided looking reward is designed to examine uncertain regions for the second observing process. It explicitly enables the model to inspect ambiguous areas, improving its ability to mitigate perceptual uncertainties. Third, we model a weighted precision-recall accuracy reward enhancing accurate decision-making. We explore its effectiveness across diverse fine-grained object detection data consisting of challenging real-world environments, such as densely crowded scenes. Built upon existing MLLMs, DIP-R1 achieves consistent and significant improvement across various in-domain and out-of-domain scenarios. It also outperforms various existing baseline models and supervised fine-tuning methods. Our findings highlight the substantial potential of integrating RL into MLLMs for enhancing capabilities in complex real-world perception tasks.

  • 5 authors
·
May 29, 2025

A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection

Visual anomaly detection aims to identify anomalous regions in images through unsupervised learning paradigms, with increasing application demand and value in fields such as industrial inspection and medical lesion detection. Despite significant progress in recent years, there is a lack of comprehensive benchmarks to adequately evaluate the performance of various mainstream methods across different datasets under the practical multi-class setting. The absence of standardized experimental setups can lead to potential biases in training epochs, resolution, and metric results, resulting in erroneous conclusions. This paper addresses this issue by proposing a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework that is highly extensible for new methods. The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics. Additionally, we have proposed the GPU-assisted ADEval package to address the slow evaluation problem of metrics like time-consuming mAU-PRO on large-scale data, significantly reducing evaluation time by more than 1000-fold. Through extensive experimental results, we objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection. We hope that ADer will become a valuable resource for researchers and practitioners in the field, promoting the development of more robust and generalizable anomaly detection systems. Full codes are open-sourced at https://github.com/zhangzjn/ader.

  • 10 authors
·
Jun 5, 2024

R-AVST: Empowering Video-LLMs with Fine-Grained Spatio-Temporal Reasoning in Complex Audio-Visual Scenarios

Recently, rapid advancements have been made in multimodal large language models (MLLMs), especially in video understanding tasks. However, current research focuses on simple video scenarios, failing to reflect the complex and diverse nature of real-world audio-visual events in videos. To bridge this gap, we firstly introduce R-AVST, a dataset for audio-visual reasoning featuring fine-grained spatio-temporal annotations. In constructing this, we design a pipeline consisting of LLM-based key object extraction, automatic spatial annotation and manual quality inspection, resulting in over 5K untrimmed videos with 27K objects across 100 types of audio-visual events. Building on this dataset, we define three core tasks for spatio-temporal reasoning in audio-visual scenes and generate more than 8K high-quality, evenly distributed question-answer pairs to effectively benchmark model performance. To further enhance reasoning, we propose AVST-Zero, a reinforcement learning-based model that avoids intermediate supervision, directly optimizing behavior via carefully designed multi-dimensional rewards. Extensive experiments validate the effectiveness of our R-AVST in advancing audio-visual spatio-temporal reasoning, upon which AVST-Zero demonstrates competitive performance compared to existing models. To the best of our knowledge, R-AVST is the first dataset designed for real-world audio-visual spatio-temporal reasoning, and AVST-Zero offers a novel perspective for tackling future challenges in this domain.

  • 6 authors
·
Nov 20, 2025