- Dequantified Diffusion-Schr{ö}dinger Bridge for Density Ratio Estimation Density ratio estimation is fundamental to tasks involving f-divergences, yet existing methods often fail under significantly different distributions or inadequately overlapping supports -- the density-chasm and the support-chasm problems. Additionally, prior approaches yield divergent time scores near boundaries, leading to instability. We design D^3RE, a unified framework for robust, stable and efficient density ratio estimation. We propose the dequantified diffusion bridge interpolant (DDBI), which expands support coverage and stabilizes time scores via diffusion bridges and Gaussian dequantization. Building on DDBI, the proposed dequantified Schr{\"o}dinger bridge interpolant (DSBI) incorporates optimal transport to solve the Schr{\"o}dinger bridge problem, enhancing accuracy and efficiency. Our method offers uniform approximation and bounded time scores in theory, and outperforms baselines empirically in mutual information and density estimation tasks. 6 authors · May 8
1 Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios. 6 authors · Mar 21, 2024
- A differentiable brain simulator bridging brain simulation and brain-inspired computing Brain simulation builds dynamical models to mimic the structure and functions of the brain, while brain-inspired computing (BIC) develops intelligent systems by learning from the structure and functions of the brain. The two fields are intertwined and should share a common programming framework to facilitate each other's development. However, none of the existing software in the fields can achieve this goal, because traditional brain simulators lack differentiability for training, while existing deep learning (DL) frameworks fail to capture the biophysical realism and complexity of brain dynamics. In this paper, we introduce BrainPy, a differentiable brain simulator developed using JAX and XLA, with the aim of bridging the gap between brain simulation and BIC. BrainPy expands upon the functionalities of JAX, a powerful AI framework, by introducing complete capabilities for flexible, efficient, and scalable brain simulation. It offers a range of sparse and event-driven operators for efficient and scalable brain simulation, an abstraction for managing the intricacies of synaptic computations, a modular and flexible interface for constructing multi-scale brain models, and an object-oriented just-in-time compilation approach to handle the memory-intensive nature of brain dynamics. We showcase the efficiency and scalability of BrainPy on benchmark tasks, highlight its differentiable simulation for biologically plausible spiking models, and discuss its potential to support research at the intersection of brain simulation and BIC. 6 authors · Nov 8, 2023
66 Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance In this report, we introduce Falcon-H1, a new series of large language models (LLMs) featuring hybrid architecture designs optimized for both high performance and efficiency across diverse use cases. Unlike earlier Falcon models built solely on Transformer or Mamba architectures, Falcon-H1 adopts a parallel hybrid approach that combines Transformer-based attention with State Space Models (SSMs), known for superior long-context memory and computational efficiency. We systematically revisited model design, data strategy, and training dynamics, challenging conventional practices in the field. Falcon-H1 is released in multiple configurations, including base and instruction-tuned variants at 0.5B, 1.5B, 1.5B-deep, 3B, 7B, and 34B parameters. Quantized instruction-tuned models are also available, totaling over 30 checkpoints on Hugging Face Hub. Falcon-H1 models demonstrate state-of-the-art performance and exceptional parameter and training efficiency. The flagship Falcon-H1-34B matches or outperforms models up to 70B scale, such as Qwen3-32B, Qwen2.5-72B, and Llama3.3-70B, while using fewer parameters and less data. Smaller models show similar trends: the Falcon-H1-1.5B-Deep rivals current leading 7B-10B models, and Falcon-H1-0.5B performs comparably to typical 7B models from 2024. These models excel across reasoning, mathematics, multilingual tasks, instruction following, and scientific knowledge. With support for up to 256K context tokens and 18 languages, Falcon-H1 is suitable for a wide range of applications. All models are released under a permissive open-source license, underscoring our commitment to accessible and impactful AI research. 27 authors · Jul 30 5
8 CWM: An Open-Weights LLM for Research on Code Generation with World Models We release Code World Model (CWM), a 32-billion-parameter open-weights LLM, to advance research on code generation with world models. To improve code understanding beyond what can be learned from training on static code alone, we mid-train CWM on a large amount of observation-action trajectories from Python interpreter and agentic Docker environments, and perform extensive multi-task reasoning RL in verifiable coding, math, and multi-turn software engineering environments. With CWM, we provide a strong testbed for researchers to explore the opportunities world modeling affords for improving code generation with reasoning and planning in computational environments. We present first steps of how world models can benefit agentic coding, enable step-by-step simulation of Python code execution, and show early results of how reasoning can benefit from the latter. CWM is a dense, decoder-only LLM trained with a context size of up to 131k tokens. Independent of its world modeling capabilities, CWM offers strong performance on general coding and math tasks: it reaches pass@1 scores of 65.8% on SWE-bench Verified (with test-time scaling), 68.6% on LiveCodeBench, 96.6% on Math-500, and 76.0% on AIME 2024. To support further research on code world modeling, we release model checkpoints after mid-training, SFT, and RL. AI at Meta · Sep 30 2
13 Evaluate & Evaluation on the Hub: Better Best Practices for Data and Model Measurements Evaluation is a key part of machine learning (ML), yet there is a lack of support and tooling to enable its informed and systematic practice. We introduce Evaluate and Evaluation on the Hub --a set of tools to facilitate the evaluation of models and datasets in ML. Evaluate is a library to support best practices for measurements, metrics, and comparisons of data and models. Its goal is to support reproducibility of evaluation, centralize and document the evaluation process, and broaden evaluation to cover more facets of model performance. It includes over 50 efficient canonical implementations for a variety of domains and scenarios, interactive documentation, and the ability to easily share implementations and outcomes. The library is available at https://github.com/huggingface/evaluate. In addition, we introduce Evaluation on the Hub, a platform that enables the large-scale evaluation of over 75,000 models and 11,000 datasets on the Hugging Face Hub, for free, at the click of a button. Evaluation on the Hub is available at https://huggingface.co/autoevaluate. 19 authors · Sep 30, 2022
14 Datasets: A Community Library for Natural Language Processing The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets. Hugging Face · Sep 6, 2021
- Open-Source Conversational AI with SpeechBrain 1.0 SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech recognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete "recipes" of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks. 32 authors · Jun 29, 2024
29 Gemini Robotics: Bringing AI into the Physical World Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world. 118 authors · Mar 25 2
- Sheet Music Benchmark: Standardized Optical Music Recognition Evaluation In this work, we introduce the Sheet Music Benchmark (SMB), a dataset of six hundred and eighty-five pages specifically designed to benchmark Optical Music Recognition (OMR) research. SMB encompasses a diverse array of musical textures, including monophony, pianoform, quartet, and others, all encoded in Common Western Modern Notation using the Humdrum **kern format. Alongside SMB, we introduce the OMR Normalized Edit Distance (OMR-NED), a new metric tailored explicitly for evaluating OMR performance. OMR-NED builds upon the widely-used Symbol Error Rate (SER), offering a fine-grained and detailed error analysis that covers individual musical elements such as note heads, beams, pitches, accidentals, and other critical notation features. The resulting numeric score provided by OMR-NED facilitates clear comparisons, enabling researchers and end-users alike to identify optimal OMR approaches. Our work thus addresses a long-standing gap in OMR evaluation, and we support our contributions with baseline experiments using standardized SMB dataset splits for training and assessing state-of-the-art methods. Pattern Recognition and Artificial Intelligence Group · Jun 12 1
- Investigating the contribution of terrain-following coordinates and conservation schemes in AI-driven precipitation forecasts Artificial Intelligence (AI) weather prediction (AIWP) models often produce "blurry" precipitation forecasts that overestimate drizzle and underestimate extremes. This study provides a novel solution to tackle this problem -- integrating terrain-following coordinates with global mass and energy conservation schemes into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of this solution using FuXi, an example AIWP model, adapted to 1.0-degree grid spacing data. Verification results show large performance gains. The conservation schemes are found to reduce drizzle bias, whereas using terrain-following coordinates improves the estimation of extreme events and precipitation intensity spectra. Furthermore, a case study reveals that terrain-following coordinates capture near-surface winds better over mountains, offering AIWP models more accurate information on understanding the dynamics of precipitation processes. The proposed solution of this study can benefit a wide range of AIWP models and bring insights into how atmospheric domain knowledge can support the development of AIWP models. 4 authors · Feb 28
- Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models. 7 authors · Sep 29, 2024
- TutorBench: A Benchmark To Assess Tutoring Capabilities Of Large Language Models As students increasingly adopt large language models (LLMs) as learning aids, it is crucial to build models that are adept at handling the nuances of tutoring: they need to identify the core needs of students, be adaptive, provide personalized guidance, and be accurate. To this end, we introduce TutorBench, a dataset and evaluation benchmark designed to rigorously evaluate the core tutoring skills of LLMs. The dataset comprises 1,490 samples curated by human experts, focused on high-school and AP-level curricula. The samples are drawn from three common tutoring tasks: (i) generating adaptive explanations tailored to a student's confusion, (ii) providing actionable feedback on a student's work, and (iii) promoting active learning through effective hint generation. To account for the inherent complexity of tutoring, samples are accompanied by sample-specific rubrics which are used to judge model responses during evaluation. TutorBench uses a reliable and fine-grained automatic evaluation method that uses an LLM-judge and the sample-specific rubrics. We evaluate 16 frontier LLMs on TutorBench and present a detailed analysis of their performance and behavior. Our results show that none of the frontier LLMs achieve a score of greater than 56%, showing a large room for improvement. We find that LLMs fall short in exhibiting the full range of tutoring skills needed to guide, diagnose, and support students effectively, with all the frontier models achieving less than a 60% pass rate on rubric criteria related to these skills. We also find that different model families exhibit varied strengths and limitations: the Claude models outperform others in supporting active learning, while they lag behind in the other two use cases. By releasing TutorBench, we provide a comprehensive and unsaturated benchmark to guide the development of the next-generation of AI tutors. 14 authors · Oct 2
4 Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates first several views of the object with factored shaded and albedo appearance channels, and then reconstructs colours, metalness and roughness in 3D, using a deferred shading loss for efficient supervision. It also uses a sign-distance function to represent 3D shape more reliably and introduces a corresponding loss for direct shape supervision. This is implemented using fused kernels for high memory efficiency. After mesh extraction, a texture refinement transformer operating in UV space significantly improves sharpness and details. AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over the best concurrent work for few-view reconstruction, and a human preference of 72% over the best industry competitors of comparable speed, including those that support PBR. Project page with generated assets: https://assetgen.github.io 11 authors · Jul 2, 2024