Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe Carnegie Supernova Project I: Third Photometry Data Release of Low-Redshift Type Ia Supernovae and Other White Dwarf Explosions
We present final natural system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z = 0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. (1998) standards in the CSP-I natural system is presented.
Supernova Light Curves Approximation based on Neural Network Models
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy. Recent studies have demonstrated the superior quality of solutions based on various machine learning models. These models learn to classify supernova types using their light curves as inputs. Preprocessing these curves is a crucial step that significantly affects the final quality. In this talk, we study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve. We use these approximations as inputs for supernovae classification models and demonstrate that the proposed methods outperform the state-of-the-art based on Gaussian processes applying to the Zwicky Transient Facility Bright Transient Survey light curves. MLP demonstrates similar quality as Gaussian processes and speed increase. Normalizing Flows exceeds Gaussian processes in terms of approximation quality as well.
A late-time view of the progenitor candidates of the Type II-P SN 2009ib and SN 2012ec
The progenitors of Type II-P supernovae (SNe) are generally considered to be red supergiants; however, the so-called "red supergiant problem" indicates that a deeper investigation into the progenitors of this class of SNe is necessary. SN 2009ib and SN 2012ec are two Type II-P SNe for which progenitor candidates have been identified in pre-explosion images. In this work, we use new, late-time Hubble Space Telescope observations to search for the disappearance of these two candidates and confirm their nature. In the case of SN 2009ib, the late-time high-resolution imaging reveals that the progenitor candidate is in fact a blend of multiple unresolved stars. Subsequent difference imaging shows no significant change in brightness at the SN's position even years after the explosion. These findings indicate that the flux from the previously identified source is dominated by unresolved field stars, with little to no contribution from the genuine progenitor. In the case of SN 2012ec, a comparison of pre-explosion and late-time images reveals that the progenitor candidate faded by about 0.6 mag in the F814W band seven years after the explosion, confirming the disappearance of the progenitor.
Photometric Data-driven Classification of Type Ia Supernovae in the Open Supernova Catalog
We propose a novel approach for a machine-learning-based detection of the type Ia supernovae using photometric information. Unlike other approaches, only real observation data is used during training. Despite being trained on a relatively small sample, the method shows good results on real data from the Open Supernovae Catalog. We also investigate model transfer from the PLAsTiCC simulations train dataset to real data application, and the reverse, and find the performance significantly decreases in both cases, highlighting the existing differences between simulated and real data.
A comprehensive grid of massive binary evolution models for the Galaxy - Surface properties of post-mass transfer stars
Massive stars often evolve in binary systems, in which binary interactions significantly affect their evolution. Massive stars in the Galaxy serve as valuable testbeds for this due to their proximity. We computed the evolution of more than 38000 galactic binary systems with initial primary star masses of 5...100 Msun. In this paper, we aim to investigate the surface properties of post-mass transfer mass donor and mass gainer stars through core hydrogen burning, core helium burning, and for the pre-supernova stage. The models are computed with MESA, incorporating detailed stellar and binary physics, including internal differential rotation, magnetic angular momentum transport, mass-dependent overshooting, stellar wind mass-loss, mass and angular momentum transfer and tidal interaction. They incorporate a new extensive nuclear network for hydrogen burning, which allows us to track the full range of hydrogen burning nucleosynthesis products, from the light elements to aluminum. The widest, non-interacting binary models in our grid effectively serve as single star models. We find that mass gainers and mass donors may evolve through long-lived blue and yellow supergiant stages during core helium burning where single stars of the same mass remain red supergiants. Furthermore, some of our gainers evolve into more luminous yellow and blue supergiants prior to core collapse than single stars, while some donors end their life as red or yellow supergiants, showing a rich diversity in supernova progenitors. We show that the surface elemental and isotopic abundances carry valuable information about a star's evolutionary history and can be used to distinguish binary interaction products from single stars. Our binary model grid may serve as a tool for identifying post-mass transfer stars and supernovae, and holds potential for population studies, supernova modeling, and guidance of future observations.
Synthetic Light Curves and Spectra for the Photospheric Phase of a 3D Stripped-Envelope Supernova Explosion Model
We present synthetic light curves and spectra from three-dimensional (3D) Monte Carlo radiative transfer simulations based on a 3D core-collapse supernova explosion model of an ultra-stripped 3.5,M_{odot} progenitor. Our calculations predict a fast and faint transient with Delta m_{15} sim 1- 2,mag and peak bolometric luminosity between -15.3,mag and -16.4,mag. Due to a large-scale unipolar asymmetry in the distribution of ^{56}Ni, there is a pronounced viewing-angle dependence with about 1,mag difference between the directions of highest and lowest luminosity. The predicted spectra for this rare class of explosions do not yet match any observed counterpart. They are dominated by prominent Mg~II lines, but features from O, C, Si, and Ca are also found. In particular, the O~I line at 7{774} appears as a blended feature together with Mg~II emission. Our model is not only faster and fainter than the observed Ib/c supernova population, but also shows a correlation between higher peak luminosity and larger Delta m_{15} that is not present in observational samples. A possible explanation is that the unusually small ejecta mass of our model accentuates the viewing-angle dependence of the photometry. We suggest that the viewing-angle dependence of the photometry may be used to constrain asymmetries in explosion models of more typical stripped-envelope supernova progenitors in future.
Surrogate Modeling for Computationally Expensive Simulations of Supernovae in High-Resolution Galaxy Simulations
Some stars are known to explode at the end of their lives, called supernovae (SNe). The substantial amount of matter and energy that SNe release provides significant feedback to star formation and gas dynamics in a galaxy. SNe release a substantial amount of matter and energy to the interstellar medium, resulting in significant feedback to star formation and gas dynamics in a galaxy. While such feedback has a crucial role in galaxy formation and evolution, in simulations of galaxy formation, it has only been implemented using simple {\it sub-grid models} instead of numerically solving the evolution of gas elements around SNe in detail due to a lack of resolution. We develop a method combining machine learning and Gibbs sampling to predict how a supernova (SN) affects the surrounding gas. The fidelity of our model in the thermal energy and momentum distribution outperforms the low-resolution SN simulations. Our method can replace the SN sub-grid models and help properly simulate un-resolved SN feedback in galaxy formation simulations. We find that employing our new approach reduces the necessary computational cost to sim 1 percent compared to directly resolving SN feedback.
The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints
We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. A flat LambdaCDM cosmological fit to 231 SNLS high redshift Type Ia supernovae alone gives Omega_M = 0.211 +/- 0.034(stat) +/- 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of +/- 0.026 on Omega_M. No clear evidence is found for a possible evolution of the slope (beta) of the colour-luminosity relation with redshift.
Understanding of the properties of neural network approaches for transient light curve approximations
Modern-day time-domain photometric surveys collect a lot of observations of various astronomical objects and the coming era of large-scale surveys will provide even more information on their properties. Spectroscopic follow-ups are especially crucial for transients such as supernovae and most of these objects have not been subject to such studies. }{Flux time series are actively used as an affordable alternative for photometric classification and characterization, for instance, peak identifications and luminosity decline estimations. However, the collected time series are multidimensional and irregularly sampled, while also containing outliers and without any well-defined systematic uncertainties. This paper presents a search for the best-performing methods to approximate the observed light curves over time and wavelength for the purpose of generating time series with regular time steps in each passband.}{We examined several light curve approximation methods based on neural networks such as multilayer perceptrons, Bayesian neural networks, and normalizing flows to approximate observations of a single light curve. Test datasets include simulated PLAsTiCC and real Zwicky Transient Facility Bright Transient Survey light curves of transients.}{The tests demonstrate that even just a few observations are enough to fit the networks and improve the quality of approximation, compared to state-of-the-art models. The methods described in this work have a low computational complexity and are significantly faster than Gaussian processes. Additionally, we analyzed the performance of the approximation techniques from the perspective of further peak identification and transients classification. The study results have been released in an open and user-friendly Fulu Python library available on GitHub for the scientific community.
First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Photometric Pipeline and Light Curve Data Release
We present griz light curves of 251 Type Ia Supernovae (SNe Ia) from the first 3 years of the Dark Energy Survey Supernova Program's (DES-SN) spectroscopically classified sample. The photometric pipeline described in this paper produces the calibrated fluxes and associated uncertainties used in the cosmological parameter analysis (Brout et al. 2018-SYS, DES Collaboration et al. 2018) by employing a scene modeling approach that simultaneously forward models a variable transient flux and temporally constant host galaxy. We inject artificial point sources onto DECam images to test the accuracy of our photometric method. Upon comparison of input and measured artificial supernova fluxes, we find flux biases peak at 3 mmag. We require corrections to our photometric uncertainties as a function of host galaxy surface brightness at the transient location, similar to that seen by the DES Difference Imaging Pipeline used to discover transients. The public release of the light curves can be found at https://des.ncsa.illinois.edu/releases/sn.
Channels of Stellar-mass Black Hole Formation
On the basis of a large collection of detailed 3D core-collapse supernova simulations carried to late times, we identify four channels of stellar mass black hole formation. Our examples for Channel 1 involve the formation of lower-gap and above black holes in energetic asymmetric supernova explosions. Our Channel 2 example involves a modest supernova explosion that may leave behind a lower-gap to sim10 M_{odot} black hole. The latter may not be easily distinguishable from ``standard" supernovae that birth neutron stars. Our Channel 3 example experiences an aborted core-collapse explosion, more often in the context of a low-metallicity progenitor, whose residue is a black hole with a mass perhaps up to sim40 M_{odot}. The latter may be accompanied by a pulsational-pair instability supernova (PPISN). Channel 4 is the only quiescent or ``silent" scenario for which perhaps sim5 to 15 M_{odot} black holes are left. Where appropriate, we estimate ^{56}Ni yields, explosion energies, approximate recoil speeds, and residual black hole masses. The progenitor mass density and binding energy profiles at collapse influence the outcome in a systematic way. The statistics and prevalence of these various channels depend not only on still evolving supernova theory, but on remaining issues with the theory of massive star evolution, binary interaction, wind mass loss, metallicity, and the nuclear equation of state. Importantly, we suggest, but have not proven, that the silent channel for black hole formation may not be the dominant formation modality.
Signatures of the Shock Interaction as an Additional Power Source in the Nebular Spectra of SN 2023ixf
Red supergiants may lose significant mass through steady winds and episodic eruptions in the final 100-1000 years before the core collapses, shaping their circumstellar environment. Interaction between supernova (SN) ejecta and distant circumstellar material (CSM) can generate shocks, which can energize the ejecta and serve as a key power source during the nebular phase of the SN. In the present work, we investigate the nebular spectrum of SN 2023ixf, observed one year post-explosion (at +363 d) with the recently commissioned WEAVE instrument on the 4.2m William Herschel Telescope. This marks the first supernova spectrum captured with WEAVE. In this spectrum, Halpha exhibits a peculiar evolution, flanked by blueward and redward broad components centred at simpm 5650,km,s^{-1} from the rest velocity of Halpha, which are seen for only a few SNe to date. These features indicate energy deposition from shocks generated by the interaction of ejecta with a CSM expelled nearly 350 - 640 years pre-explosion. Comparisons of the +363 d spectrum with model spectra from the literature, that include varying shock powers, suggest a shock power of at least sim 5 times 10 ^{40},erg,s^{-1} at this epoch. Additionally, analysis of the [O I] doublet, along with other prominent emission lines, provides evidence for clumpiness, dust formation, and asymmetry within the ejecta and/or the surrounding CSM. These emission lines also helped to constrain the oxygen mass (approx0.19^{scriptscriptstyle +0.08}_{scriptscriptstyle -0.04} M_odot), He-core mass (<3 M_odot) and the zero-age main sequence mass (lesssim 12 M_odot) of the progenitor of SN 2023ixf. The comparison with other Type II SNe highlights SN 2023ixf's unique shock interaction signatures and evidence of dust formation, setting it apart in terms of evolution and dynamics.
Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB
We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.
CfA3: 185 Type Ia Supernova Light Curves from the CfA
We present multi-band photometry of 185 type-Ia supernovae (SN Ia), with over 11500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously-observed and reduced nearby SN Ia (z < 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of 0.02 mag or better in BVRIr'i' and roughly 0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SN Ia are sufficiently distinct from other SN Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.
The Pantheon+ Analysis: The Full Dataset and Light-Curve Release
Here we present 1701 light curves of 1550 spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the SH0ES (Supernovae and H0 for the Equation of State of dark energy) distance-ladder analysis. This effort is one part of a series of works that perform an extensive review of redshifts, peculiar velocities, photometric calibration, and intrinsic-scatter models of SNe Ia. The total number of light curves, which are compiled across 18 different surveys, is a significant increase from the first Pantheon analysis (1048 SNe), particularly at low redshift (z). Furthermore, unlike in the Pantheon analysis, we include light curves for SNe with z<0.01 such that SN systematic covariance can be included in a joint measurement of the Hubble constant (H_0) and the dark energy equation-of-state parameter (w). We use the large sample to compare properties of 151 SNe Ia observed by multiple surveys and 12 pairs/triplets of "SN siblings" - SNe found in the same host galaxy. Distance measurements, application of bias corrections, and inference of cosmological parameters are discussed in the companion paper by Brout et al. (2022b), and the determination of H_0 is discussed by Riess et al. (2022). These analyses will measure w with sim3% precision and H_0 with 1 km/s/Mpc precision.
Photometry of Type II Supernova SN 2023ixf with a Worldwide Citizen Science Network
We present highly sampled photometry of the supernova (SN) 2023ixf, a Type II SN in M101, beginning 2 days before its first known detection. To gather these data, we enlisted the global Unistellar Network of citizen scientists. These 252 observations from 115 telescopes show the SN's rising brightness associated with shock emergence followed by gradual decay. We measure a peak M_{V} = -18.18 pm 0.09 mag at 2023-05-25 21:37 UTC in agreement with previously published analyses.
High N/O ratio at high redshift as a result of a strong burst of star formation and differential galactic winds
Recent observations by JWST have revealed supersolar ^{14}N abundances in galaxies at very high redshift. On the other hand, these galaxies show subsolar metallicity. The observed N/O ratios are difficult to reproduce in the framework of chemical evolution models for the Milky Way. Our aim is to reproduce these high N/O ratios with chemical evolution models assuming different histories of star formation triggering galactic winds coupled with detailed nucleosynthesis prescriptions for ^{14}N, ^{12}C, ^{16}O and ^{56}Fe. We compute several models for small galaxies (10^{9} - 10^{10} M_{odot}) with high star formation efficiency and strong galactic winds. These winds are assumed to be differential, carrying out mainly the products of the explosion of core-collapse supernovae. We find that only models with high star formation rates, normal initial mass function, and differential galactic winds can reproduce the observed chemical abundances. We also find that with the same assumptions about star formation and galactic winds, but with a very rapid formation resulting from fast gas infall, we can also reproduce the estimated ages of these objects. We find no necessity to invoke peculiar nucleosynthesis from Population III stars, very massive stars and supermassive stars.
AstroM^3: A self-supervised multimodal model for astronomy
While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM^3, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an n>2 mode model in astronomy. Extensions to n>3 modes is naturally anticipated with this approach.
Anisotropic Compact Star Model Satisfying Karmarkar Conditions
A new class of solutions describing the composition of compact stars has been proposed, assuming that the fluid distribution inside the star is anisotropic. This is achieved by assuming the appropriate metric potential and then solving Einstein's field equations using Karmarkar conditions [Karmarkar K. R., Proc. Indian Acad. Sci. 27 (1948) 56] to derive the expressions for star density, the radial and tangential pressures in terms of the constants A, B, a paramter `a' and the curvature parameter R. The equations thus obtained have been passed through rigorous conditional analysis. It is further shown that the model is physically viable and mathematically well-behaved, fulfilling the requisite conditions viz., regularity condition, strong energy condition, causality condition, etc. Observed star candidates including EXO 1785-248, SMC X-1, SAXJ1808.43658(SS2), HER X-1, 4U 1538-52, Cen X-3 and LMC X-4 were found to conform to a good approximation through the outcome of this model for a=0.5.
Extracting SASI signatures from Gravitational Waves of Core-Collapse Supernovae using the Hilbert-Huang Transform
Core collapse supernovae are among the most energetic astrophysical events in the Universe. Despite huge efforts on understanding the main ingredients triggering such explosions, we still lack of compelling evidences for the precise mechanism driving those phenomena. They are expected to produce gravitational waves due to asymmetric mass motions in the collapsing core, and emit in the meanwhile neutrinos as a result of the interactions in their high-density environment. The combination of these two cosmic messengers can provide a unique probe to study the inner engine of these processes and unveil the explosion mechanism. Among the possible detectable signature, standing accretion shock instabilities (SASI) are particularly relevant in this context as they establish a direct connection between gravitational wave emission and the outcoming neutrino flux. In this work, Hilbert-Huang transform is applied to a selected sample of 3D numerical simulations, with the aim of identifying SASI contribution and extract its instantaneous frequency. The performance of the method is evaluated in the context of Einstein Telescope.
Follow-Up of Extended Shells around B[e] Stars
B[e] stars are massive B type emission line stars in different evolutionary stages ranging from pre-main sequence to post-main sequence. Due to their mass loss and ejection events these objects deposit huge amounts of mass and energy into their environment and enrich it with chemically processed material, contributing significantly to the chemical and dynamical evolution of their host galaxies. However, the large-scale environments of these enigmatic objects have not attracted much attention. The first and so far only catalog reporting the detection of extended shells around a sample of B[e] stars was an Ha imaging survey carried out in the year 2001, and was limited to bright targets in the northern hemisphere. We have recently started a follow-up of those targets to detect possible evolution of their nebulae in the plane of the sky over a baseline of two decades. Furthermore, we extend our survey to southern targets and fainter northern ones to complement and complete our knowledge on large-scale ejecta surrounding B[e] stars. Besides imaging in Ha and selected nebular lines, we utilize long-slit and 3D spectral observations across the nebulae to derive their physical properties. We discovered pronounced nebula structures around 15 more objects, resulting in a total of 27 B[e] stars with a large-scale nebula. Here we present our (preliminary) results for three selected objects: the two massive supergiants MWC137 and MWC 314, and the unclassified B[e] star MWC 819.
The Binary Fraction of Red Supergiants in the Magellanic Clouds
Red supergiants (RSGs), as the descendants of OB-type stars and the progenitors of supernovae, provide crucial insights into the evolution of massive stars, particularly in binary systems. Previous studies show that the binary fraction of RSGs (approx 15% - 40%) is significantly lower than that of their predecessors (approx 50% - 70%). In this work, we investigate the binary fraction of RSGs with the recently selected largest samples of 4695 and 2097 RSGs in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), respectively. The binary system with a hot companion (O-, B- and A-type star) is identified by detecting the ultraviolet (UV) excess in the observed spectral energy distribution (SED) ranging from ultraviolet to mid-infrared after subtracting the model SED of RSG since RSGs are very weak in the UV band. It is found that the lower limit of binarity is 30.2% pm 0.7% and 32.2% pm 1% in the LMC and SMC, respectively. If the sample is limited to luminous RSGs with log L/L_{odot} > 4.0, the binary fraction becomes 26.6% pm 1.1% and 26.4% pm 1.7% in the LMC and SMC, respectively. The derived binary fraction is valid in the range of sim 2.3 < log P / [d] < sim 8. Our study suggests that roughly one-third of massive stars host a third companion within sim 30,000 AU. In addition, 15 RSGs are also identified as binary via HST/STIS spectra, and a handful of the binaries identified by the SED fitting are confirmed by their light curve and radial velocity dispersion. The stellar parameters of the companions, i.e. T_{eff}, R, L and log g, are calculated by model fitting.
Detectability of Supernova Remnants with the Southern Wide-field Gamma-ray Observatory
Supernova remnants (SNRs) are likely sources of hadronic particle acceleration within our galaxy, contributing to the galactic cosmic ray flux. Next-generation instruments, such as the Southern Wide-field Gamma-ray Observatory (SWGO), will be of crucial importance in identifying new candidate SNRs. SWGO will observe two-thirds of the gamma-ray sky, covering the energy range between a few hundreds of GeV and a PeV. In this work, we apply a model of SNR evolution to a catalogue of SNRs in order to predict their gamma-ray spectra, explore the SNR emission phase space, and quantify detection prospects for SWGO. Finally, we validate our model for sources observed with current-generation instruments, fitting it using a Monte-Carlo Markov Chain technique to the observed gamma-ray emission from four SNRs. We anticipate that at least 6, and potentially as many as 11 SNRs will be detected by SWGO within 1 year.
Inferring the Equation of State from Neutron Star Observables via Machine Learning
We have conducted an extensive study using a diverse set of equations of state (EoSs) to uncover strong relationships between neutron star (NS) observables and the underlying EoS parameters using symbolic regression method. These EoS models, derived from a mix of agnostic and physics-based approaches, considered neutron stars composed of nucleons, hyperons, and other exotic degrees of freedom in beta equilibrium. The maximum mass of a NS is found to be strongly correlated with the pressure and baryon density at an energy density of approximately 800 MeV.fm^{-3}. We have also demonstrated that the EoS can be expressed as a function of radius and tidal deformability within the NS mass range 1-2M_odot. These insights offer a promising and efficient framework to decode the dense matter EoS directly from the accurate knowledge of NS observables.
Vortex Creep Heating in Neutron Star Cooling: New Insights into Thermal Evolution of Heavy Neutron Stars
Neutron stars provide unique laboratories for probing physics of dense nuclear matter under extreme conditions. Their thermal and luminosity evolution reflects key internal properties such as the equation of state (EoS), nucleon superfluidity and superconductivity, envelope composition, and magnetic field, and so on. Recent observations [e.g., V. Abramkin et al., ApJ 924, 128 (2022)] have revealed unexpectedly warm old neutron stars, which cannot be explained by standard neutrino-photon cooling models. The failure of the standard cooling models implies the presence of additional internal heating mechanism. Building on the previous study [M. Fujiwara et al., JCAP 03, 051 (2024)], which proposed vortex creep heating (VCH) from the frictional motion of superfluid vortices as a viable mechanism, we extend the cooling framework to include both VCH and direct Urca (DUrca) processes. These are implemented in our code to explore their combined impact, particularly for massive neutron stars where DUrca operates. By varying rotational parameters (P, P, P_0), EoS models (APR, BSk24), pairing gaps, and envelope compositions, we examine how heating-cooling interplay shapes the temperature evolution. Our results show that VCH can substantially mitigate the rapid cooling driven by DUrca, offering new evolutionary pathways for massive neutron stars.
Fast Neutrino Flavor Conversions can Help and Hinder Neutrino-Driven Explosions
We present the first simulations of core-collapse supernovae in axial symmetry with feedback from fast neutrino flavor conversion (FFC). Our schematic treatment of FFCs assumes instantaneous flavor equilibration under the constraint of lepton-number conservation individually for each flavor. Systematically varying the spatial domain where FFCs are assumed to occur, we find that they facilitate SN explosions in low-mass (9-12 solar masses) progenitors that otherwise explode with longer time delays, whereas FFCs weaken the tendency to explode of higher-mass (around 20 solar masses) progenitors.
JAGB 2.0: Improved Constraints on the J-region Asymptotic Giant Branch-based Hubble Constant from an Expanded Sample of JWST Observations
The J-region Asymptotic Giant Branch (JAGB) is an overdensity of stars in the near-infrared, attributed to carbon-rich asymptotic giant branch stars, and recently used as a standard candle for measuring extragalactic distances and the Hubble constant. Using JWST in Cycle 2, we extend JAGB measurements to 6 hosts of 9 Type Ia supernovae (SNe Ia) (NGC 2525, NGC 3147, NGC 3370, NGC 3447, NGC 5468, and NGC 5861), with two at D sim 40 Mpc, all calibrated by the maser host NGC 4258. We investigate the effects of incompleteness and find that we are unable to recover a robust JAGB measurement in one of the two most distant hosts at R sim 40 Mpc, NGC 3147. We compile all JWST JAGB observations in SNe Ia hosts, 15 galaxies hosting 18 SNe Ia, from the SH0ES and CCHP programs and employ all literature measures (mode, mean, median, model). We find no significant mean difference between these distances and those from HST Cepheids, -0.03pm0.02 (stat) pm 0.05 (sys) mag. We find a difference of 0.11 pm 0.02 mag between JAGB mode measurements in the CCHP analyses of two fields in NGC 4258, a feature also seen in two SH0ES fields (see field-to-field variations in Li et al. 2024a), indicating significant field-to-field variation of JAGB measurements in NGC 4258 which produce a large absolute calibration uncertainty. Variations are also seen in the shape of the JAGB LF across galaxies so that different measures produce different values of the Hubble constant. We look for but do not (yet) find a standardizing relation between JAGB LF skew or color dependence and the apparent variation. Using the middle result of all JAGB measures to calibrate SNe Ia yields a Hubble constant of H_0 = 73.3 pm 1.4 (stat) pm 2.0 (sys) km/s/Mpc with the systematic dominated by apparent differences across NGC 4258 calibrating fields or their measures.
The challenge of simulating the star cluster population of dwarf galaxies with resolved interstellar medium
We present results on the star cluster properties from a series of high resolution smoothed particles hydrodynamics (SPH) simulations of isolated dwarf galaxies as part of the GRIFFIN project. The simulations at sub-parsec spatial resolution and a minimum particle mass of 4 M_odot incorporate non-equilibrium heating, cooling and chemistry processes, and realise individual massive stars. All the simulations follow feedback channels of massive stars that include the interstellar-radiation field, that is variable in space and time, the radiation input by photo-ionisation and supernova explosions. Varying the star formation efficiency per free-fall time in the range epsilon_ff = 0.2 - 50% neither changes the star formation rates nor the outflow rates. While the environmental densities at star formation change significantly with epsilon_ff, the ambient densities of supernovae are independent of epsilon_ff indicating a decoupling of the two processes. At low epsilon_ff, more massive, and increasingly more bound star clusters are formed, which are typically not destroyed. With increasing epsilon_ff there is a trend for shallower cluster mass functions and the cluster formation efficiency Gamma for young bound clusters decreases from 50 % to sim 1 % showing evidence for cluster disruption. However, none of our simulations form low mass (< 10^3 M_odot) clusters with structural properties in perfect agreement with observations. Traditional star formation models used in galaxy formation simulations based on local free-fall times might therefore not be able to capture low mass star cluster properties without significant fine-tuning.
Paying Attention to Astronomical Transients: Introducing the Time-series Transformer for Photometric Classification
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
Exploring the limits of nucleonic metamodelling using different relativistic density functionals
In this work, we explore two classes of density dependent relativistic mean-field models, their predictions of proton fractions at high densities and neutron star structure. We have used a metamodelling approach to these relativistic density functionals. We have generated a large ensemble of models with these classes and then applied constraints from theoretical and experimental nuclear physics and astrophysical observations. We find that both models produce similar equations of state and neutron star mass-radius sequences. But, their underlying compositions, denoted by the proton fraction in this case, are vastly different. This reinstates previous findings that information on composition gets masqueraded in beta-equilibrium. Additional observations of non-equilibrium phenomena are necessary to pin it down.
Revisiting the Classics: On the Optical Colours of Novae as Standard Crayons
We present a systematic study of the BVRI colours of novae over the course of their eruptions. Where possible, interstellar reddening was measured using the equivalent widths of Diffuse Interstellar Bands (DIBs). Some novae lack spectra with sufficient resolution and signal-to-noise ratios; therefore, we supplement as necessary with 3D and 2D dust maps. Utilising only novae with DIB- or 3D-map-based E(B-V), we find an average intrinsic (B-V)_0 colour of novae at V-band light curve peak of 0.18 with a standard deviation of 0.31, based on a sample of 23 novae. When the light curve has declined by 2 magnitudes (t_2), we find an average (B-V)_0 = -0.02 with a standard deviation of 0.19. These average colours are consistent with previous findings, although the spreads are larger than previously found due to more accurate reddening estimates. We also examined the intrinsic (R-I)_0 and (V-R)_0 colours across our sample. These colours behave similarly to (B-V)_0, except that the (V-R)_0 colour gets redder after peak, likely due to the contributions of emission line flux. We searched for correlations between nova colours and t_2, peak V-band absolute magnitude, and GeV gamma-ray luminosity, but find no statistically significant correlations. Nova colours can therefore be used as standard "crayons" to estimate interstellar reddening from photometry alone, with 0.2--0.3 mag uncertainty. We present a novel Bayesian strategy for estimating distances to Galactic novae based on these E(B-V) measurements, independent of assumptions about luminosity, built using 3D dust maps and a stellar mass model of the Milky Way.
SN 2023ixf in the Pinwheel Galaxy M101: From Shock Breakout to the Nebular Phase
We present photometric and spectroscopic observations of SN 2023ixf covering from day one to 442 days after explosion. SN 2023ixf reached a peak V-band absolute magnitude of -18.2 pm 0.07, and light curves show that it is in the fast-decliner (IIL) subclass with a relatively short ``plateau'' phase (fewer than sim 70 days). Early-time spectra of SN 2023ixf exhibit strong, very narrow emission lines from ionized circumstellar matter (CSM), possibly indicating a Type IIn classification. But these flash/shock-ionization emission features faded after the first week and the spectrum evolved in a manner similar to that of typical Type II SNe, unlike the case of most genuine SNe~IIn in which the ejecta interact with CSM for an extended period of time and develop intermediate-width emission lines. We compare observed spectra of SN 2023ixf with various model spectra to understand the physics behind SN 2023ixf. Our nebular spectra (between 200-400 d) match best with the model spectra from a 15 rm M_{odot} progenitor which experienced enhanced mass loss a few years before explosion. A last-stage mass-loss rate of M = 0.01 rm M_{odot} yr^{-1} from the r1w6 model matches best with the early-time spectra, higher than M approx 2.4 times 10^{-3} rm M_{odot} yr^{-1} derived from the ionized H{alpha} luminosity at 1.58 d. We also use SN 2023ixf as a distance indicator and fit the light curves to derive the Hubble constant by adding SN 2023ixf to the existing sample; we obtain H_{0}=73.1^{+3.68}_{-3.50} km s^{-1} Mpc^{-1}, consistent with the results from SNe~Ia and many other independent methods.
A Machine Learning Framework for Stellar Collision Transient Identification
Modern astronomical surveys, such as the Zwicky Transient Facility (ZTF), are capable of detecting thousands of transient events per year, necessitating the use of automated and scalable data analysis techniques. Recent advances in machine learning have enabled the efficient classification and characterization of these transient phenomena. We aim to develop a fully systematic pipeline to identify candidate stellar collision events in galactic nuclei, which may otherwise be identified as tidal disruption events or other transients. We also seek to validate our simulations by comparing key physical parameters derived from observations and used in modeling these events. We generate a comprehensive bank of simulated light curves spanning a range of physical parameters and employ an approximate nearest neighbor algorithm (via the annoy library) to match these with observed ZTF light curves. Our pipeline is successfully able to associate observed ZTF light curves with simulated events. The resulting estimated parameters, including supermassive black hole masses and ejecta mass, are presented and compared to known values when applicable. We demonstrate that a systematic, machine learning-based approach can effectively identify and characterize stellar collision candidate events from large-scale transient surveys. This methodology is especially promising for future surveys which will provide us with significantly high volumes of data, such as LSST, where automated, data-intensive analysis will be critical for advancing our understanding of transient astrophysical phenomena.
Understanding the Neutron Star Population with the SKA
Since their discovery in the late 1960's the population of known neutron stars (NSs) has grown to ~2500. The last five decades of observations have yielded many surprises and demonstrated that the observational properties of NSs are remarkably diverse. The surveys that will be performed with SKA (the Square Kilometre Array) will produce a further tenfold increase in the number of Galactic NSs known. Moreover, the SKA's broad spectral coverage, sub-arraying and multi-beaming capabilities will allow us to characterise these sources with unprecedented efficiency, in turn enabling a giant leap in the understanding of their properties. Here we review the NS population and outline our strategies for studying each of the growing number of diverse classes that are populating the "NS zoo". Some of the main scientific questions that will be addressed by the much larger statistical samples and vastly improved timing efficiency provided by SKA include: (i) the spin period and spin-down rate distributions (and thus magnetic fields) at birth, and the associated information about the SNe wherein they are formed; (ii) the radio pulsar-magnetar connection; (iii) the link between normal radio pulsars, intermittent pulsars and rotating radio transients; (iv) the slowest possible spin period for a radio pulsar (revealing the conditions at the pulsar death-line); (v) proper motions of pulsars (revealing SN kick physics); (vi) the mass distribution of NSs (vii) the fastest possible spin period for a recycled pulsar (constraining magnetosphere-accretion disc interactions, gravitational wave radiation and the equation-of-state); (viii) the origin of high eccentricity millisecond pulsars (MSPs); (ix) the formation channels for recently identified triple systems; and finally (x) how isolated MSPs are formed. We expect that the SKA will break new ground unveiling exotic systems that will challenge... [abridged]
A Local Dwarf Galaxy Search Using Machine Learning
We present a machine learning search for local, low-mass galaxies (z < 0.02 and 10^6 M_odot < M_* < 10^9 M_odot) using the combined photometric data from the DESI Imaging Legacy Surveys and the WISE survey. We introduce the spectrally confirmed training sample, discuss evaluation metrics, investigate the features, compare different machine learning algorithms, and find that a 7-class neural network classification model is highly effective in separating the signal (local, low-mass galaxies) from various contaminants, reaching a precision of 95% and a recall of 76%. The principal contaminants are nearby sub-L^* galaxies at 0.02 < z < 0.05 and nearby massive galaxies at 0.05 < z < 0.2. We find that the features encoding surface brightness information are essential to achieving a correct classification. Our final catalog, which we make available, consists of 112,859 local, low-mass galaxy candidates, where 36,408 have high probability (p_{rm signal} > 0.95), covering the entire Legacy Surveys DR9 footprint. Using DESI-EDR public spectra and data from the SAGA and ELVES surveys, we find that our model has a precision of sim 100%, 96%, and 97%, respectively, and a recall of sim 51%, 68% and 53%, respectively. The results of those independent spectral verification demonstrate the effectiveness and efficiency of our machine learning classification model.
Transfer learning for galaxy feature detection: Finding Giant Star-forming Clumps in low redshift galaxies using Faster R-CNN
Giant Star-forming Clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z>1) galaxies but their formation and role in galaxy evolution remain unclear. High-resolution observations of low-redshift clumpy galaxy analogues are rare and restricted to a limited set of galaxies but the increasing availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples increasingly feasible. Deep Learning, and in particular CNNs, have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localising specific objects or features in astrophysical imaging data. In this paper we demonstrate the feasibility of using Deep learning-based object detection models to localise GSFCs in astrophysical imaging data. We apply the Faster R-CNN object detection framework (FRCNN) to identify GSFCs in low redshift (z<0.3) galaxies. Unlike other studies, we train different FRCNN models not on simulated images with known labels but on real observational data that was collected by the Sloan Digital Sky Survey Legacy Survey and labelled by volunteers from the citizen science project `Galaxy Zoo: Clump Scout'. The FRCNN model relies on a CNN component as a `backbone' feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN -`Zoobot' - with a generic classification backbone and find that Zoobot achieves higher detection performance and also requires smaller training data sets to do so. Our final model is capable of producing GSFC detections with a completeness and purity of >=0.8 while only being trained on ~5,000 galaxy images.
AstronomicAL: An interactive dashboard for visualisation, integration and classification of data using Active Learning
AstronomicAL is a human-in-the-loop interactive labelling and training dashboard that allows users to create reliable datasets and robust classifiers using active learning. This technique prioritises data that offer high information gain, leading to improved performance using substantially less data. The system allows users to visualise and integrate data from different sources and deal with incorrect or missing labels and imbalanced class sizes. AstronomicAL enables experts to visualise domain-specific plots and key information relating both to broader context and details of a point of interest drawn from a variety of data sources, ensuring reliable labels. In addition, AstronomicAL provides functionality to explore all aspects of the training process, including custom models and query strategies. This makes the software a tool for experimenting with both domain-specific classifications and more general-purpose machine learning strategies. We illustrate using the system with an astronomical dataset due to the field's immediate need; however, AstronomicAL has been designed for datasets from any discipline. Finally, by exporting a simple configuration file, entire layouts, models, and assigned labels can be shared with the community. This allows for complete transparency and ensures that the process of reproducing results is effortless
Fate and detectability of rare gas hydride ions in nova ejecta: A case study with nova templates
HeH^+ was the first heteronuclear molecule to form in the metal-free Universe after the Big Bang. The molecule gained significant attention following its first circumstellar detection in the young and dense planetary nebula NGC 7027. We target some hydride ions associated with the noble gases (HeH^+, ArH^+, and NeH^+) to investigate their formation in harsh environments like the nova outburst region. We use a photoionization modeling (based on previously published best-fit physical parameters) of the moderately fast ONe type nova, QU Vulpeculae 1984, and the CO type novae, RS Ophiuchi and V1716 Scorpii. Our steady-state modeling reveals a convincing amount of HeH^+, especially in the dense clump of RS Ophiuchi and V1716 Scorpii. The calculated upper limit on the surface brightness of HeH^+ transitions suggests that the James Webb Space Telescope (JWST) could detect some of them, particularly in sources like RS Ophiuchi and V1716 Scorpii, which have similar physical and chemical conditions and evolution. It must be clearly noted that the sources studied are used as templates, and not as targets for observations. The detection of these lines could be useful for determining the physical conditions in similar types of systems and for validating our predictions based on new electron-impact ro-vibrational collisional data at temperatures of up to 20,000 K.
A new sample of massive B-type contact binary candidates from the OGLE survey of the Magellanic Clouds
Massive contact binaries (CBs) are key to understanding close-binary evolution and stellar mergers, yet their study has been limited by the scarcity of observed systems, particularly of B-type binaries expected to dominate this class. We bridge this gap by mining a large sample of massive CB candidates from the OGLE-IV database, increasing their known numbers in the Magellanic Clouds by nearly an order of magnitude. Using main-sequence colour-magnitude limits, an observationally informed period-luminosity-colour relation for CBs, and a high morph-parameter cut (cgeq0.7), we identified 68 O- and B-type binaries that exhibit smooth, sinusoidal light curves with nearly equal eclipse depths. We then isolated a bona fide sample of 37 CB candidates (28 in the LMC and 9 in the SMC) that match theoretical colour-magnitude and period distributions derived from an extensive grid of MESA binary models. The bona fide sample, dominated by B-type systems with Papprox0.6-1 d, agrees with the predicted population and may contain many qapprox1 binaries, as expected from models showing mass equalization preceding temperature equalization during nuclear-timescale contact. Synthetic PHOEBE light curves of contact and near-contact phases of MESA models reveal a degeneracy between these configurations, suggesting possible misidentifications among these systems. Spectroscopic follow-up is required to test these predictions and refine the evolutionary framework of massive CBs.
The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope
Measurements of the dark energy equation-of-state parameter, w, have been limited by uncertainty in the selection effects and photometric calibration of z<0.1 Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is designed to lower these uncertainties by creating a new sample of z<0.1 SNe Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological parameters with 1,338 SNe from a single telescope and a single, well-calibrated photometric system. For the first time, both the low-z and high-z data are predominantly discovered by surveys that do not target pre-selected galaxies, reducing selection bias uncertainties. The z>0.1 data include 875 SNe without spectroscopic classifications and we show that we can robustly marginalize over CC SN contamination. We measure Foundation Hubble residuals to be fainter than the pre-existing low-z Hubble residuals by 0.046 pm 0.027 mag (stat+sys). By combining the SN Ia data with cosmic microwave background constraints, we find w=-0.938 pm 0.053, consistent with LambdaCDM. With 463 spectroscopically classified SNe Ia alone, we measure w=-0.933pm0.061. Using the more homogeneous and better-characterized Foundation sample gives a 55% reduction in the systematic uncertainty attributed to SN Ia sample selection biases. Although use of just a single photometric system at low and high redshift increases the impact of photometric calibration uncertainties in this analysis, previous low-z samples may have correlated calibration uncertainties that were neglected in past studies. The full Foundation sample will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.
Hydrodynamic Predictions for the Next Outburst of T Coronae Borealis: It will be the Brightest Classical or Recurrent Nova Ever Observed in X-rays
T Coronae Borealis (TCrB) is a recurrent nova (RN) with recorded outbursts in 1866, and 1946 and possible outbursts in 1217 and 1787. It is predicted to explode again in 2025 or 2026 based on multiple observational studies. The system consists of a massive (M_{wd} gtrsim 1.35 M_odot) white dwarf (WD) and a red giant (M3-M4 III). We have performed 1-D hydrodynamic simulations with NOVA to predict the behavior of the next outburst. These simulations consist of a range of mass accretion rates onto sim1.35 M_odot WDs, designed to bound the conditions necessary to achieve ignition of an explosion after an approx80 year inter-outburst period. We have used both carbon-oxygen and oxygen-neon initial compositions, in order to include the possible ejecta abundances to be measured in the observations of the next outburst. As the WD in the TCrB system is observed to be massive, theoretical predictions reported here imply that the WD is growing in mass as a consequence of the TNR. Therefore, the secular evolution of the WD may allow it to approach the Chandrasekhar limit and either explode as a Type Ia supernova or undergo accretion induced collapse, depending on its underlying composition. We have followed the evolution of just the WD, after removing the ejected matter from the surface layers. Our intent is to illuminate the mystery of the unique, second, maximum in the two well observed outbursts and we have found conditions that bracket the predictions.
New Radio Observations of the Supernova Remnant CTA 1
We present new radio images of the supernova remnant (SNR) CTA 1 at 1420 and 408 MHz, and in the 21 cm line of H I observed with the Dominion Radio Astrophysical Observatory Synthesis Telescope and at 1420 MHz observed with the Effelsberg 100 m telescope. We confirm previously described continuum features and elaborate further on filamentary features identified using the high-resolution (1') maps from these new observations. We investigate the abrupt change in sign of rotation measure (RM) across the SNR, using the linear polarization observations in the four bands around 1420 MHz. Following X. H. Sun et al.'s (2011) investigation, we both confirm that the distribution of signs of the RMs for extragalactic sources in the area appears to match that of the shell, as well as combine the data from the four bands to estimate the relative depolarization and the intrinsic rotation measure of the SNR. We do not conclusively reject X. H. Sun et al.'s (2011) claim of a Faraday screen in the foreground causing the distribution of RMs that we observe; however, we do suggest an alternative explanation of a swept-up stellar wind from the progenitor star with a toroidal magnetic field. Finally, we expand on the analysis of the H I observations by applying the Rolling Hough Transform to isolate filamentary structure and better identify H I emission with the SNR. Further constraining the H I velocity channels associated with CTA 1, we use more recent Galactic rotation curves to calculate an updated kinematic distance of 1.09 +/- 0.2 kpc.
Stellar evolution and axion-like particles: new constraints and hints from globular clusters in the GAIA DR3 data
Axion-like particles (ALPs) are hypothetical pseudoscalar bosons, natural in extensions of the Standard Model. Their interactions with ordinary matter and radiation are suppressed, making it challenging to detect them in laboratory experiments. However, these particles, produced within stellar interiors, can provide an additional mechanism for energy loss, potentially influencing stellar evolution. Prominent methods for searching for such effects involve measuring the properties of red giants and helium-burning stars in globular clusters (GCs). Here we use published catalogs of stars selected as members of seven GCs on the basis of parallaxes and proper motions measured by Gaia (Data Realease 3). Making use of previously derived theoretical relations and the new data, we find the upper limit on the ALP-electron coupling, g_{ae}<5.2*10^{-14} (95% CL), and an indication (3.3 sigma) to nonzero ALP-photon coupling, g_{a\gamma}=(6.5+1.1-1.3)*10^{-11} GeV^{-1}. Given the precision of contemporary observational data, it is imperative to refine ALP constraints through more sophisticated analyses, which will be explored in detail elsewhere.
X-ray Observations of Nova Scorpii 2023 (V1716 Sco) in Outburst
Nova Scorpii 2023 was first detected as a luminous supersoft X-ray source (SSS) 93 days after outburst and continued emitting soft X-rays for over two months, until it was too close to the Sun to observe. The nova was monitored with the Swift X-ray Telescope (XRT) and the Neutron Star Interior Composition Explorer (NICER) on the International Space Station, and in long exposures with the Chandra High Resolution Camera (HRC) and Low Energy Transmission Grating (LETG) on days 128, 129, and 183-185 after optical maximum. Swift detected a rapidly decaying SSS when observations resumed, constraining the constant bolometric luminosity phase to 9 months. The SSS flux was irregularly variable. A nearly three-fold increase in flux was observed between August and October 2023 in the 15 to 35 Angstrom range, from 3.5 x 10^(-11) to 9.4 x 10^(-11) erg cm^(-2) s^(-1). The SSS duration and effective temperature derived from the October LETG spectra indicate a massive white dwarf with temperature fitting nova evolutionary tracks for a 1.2 solar mass WD; emission lines superimposed on the WD continuum are attributed to surrounding shocked ejecta. We present a timing study based on Chandra and archival NICER data. The irregular variability timescale was days, but a 77.9 second periodic modulation in the SSS flux with varying amplitude was measured in many observations. Our analysis shows that this period was stable; short drifts derived with NICER, but not in long, uninterrupted Chandra exposures, are artifacts of measuring variable amplitude modulation. We suggest the modulations are associated with the WD rotation.
STAR: A Benchmark for Astronomical Star Fields Super-Resolution
Super-resolution (SR) advances astronomical imaging by enabling cost-effective high-resolution capture, crucial for detecting faraway celestial objects and precise structural analysis. However, existing datasets for astronomical SR (ASR) exhibit three critical limitations: flux inconsistency, object-crop setting, and insufficient data diversity, significantly impeding ASR development. We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs covering wide celestial regions. These pairs combine Hubble Space Telescope high-resolution observations with physically faithful low-resolution counterparts generated through a flux-preserving data generation pipeline, enabling systematic development of field-level ASR models. To further empower the ASR community, STAR provides a novel Flux Error (FE) to evaluate SR models in physical view. Leveraging this benchmark, we propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry, suppressing several SR state-of-the-art methods by 24.84% on a novel designed flux consistency metric, showing the priority of our method for astrophysics. Extensive experiments demonstrate the effectiveness of our proposed method and the value of our dataset. Code and models are available at https://github.com/GuoCheng12/STAR.
Cluster-lensed supernova yields from the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope
Through gravitational lensing, galaxy clusters can magnify supernovae (SNe) and create multiple images of the same SN. This enables measurements of cosmological parameters, which will be increasingly important in light of upcoming telescopic surveys. We study the prospects of detecting strongly lensed SNe in cluster fields with the Nancy Grace Roman Space Telescope (Roman)'s High Latitude Time Domain Survey (HLTDS) and the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST). We employed two approaches: one focusing on known multiply imaged galaxies behind clusters, along with the SN rates specific to those galaxies, and another based on the expected number of lensed SNe exploding in a given volume behind a galaxy cluster. We collected all the clusters in the literature that feature a well-constrained lens model and multiply imaged galaxies behind clusters with high-quality data for the lensed galaxies. This allowed us to determine the SN rate for each galaxy. We provide predictions for 46 clusters visible to the Vera C. Rubin Observatory, as well as for 9 observable by Roman's HLTDS, depending on whether the clusters fall within the survey's observing field. We predict that the number of multiply imaged SNe discovered by LSST in its first three years is 3.95 pm 0.89 from the first approach or 4.94 pm 1.02 from the second. For the HLTDS, the expected number of multiply imaged SNe ranges from 0.38 pm 0.15 to 5.2 pm 2.2, depending on the specific cluster observed, however, the fields to be targeted remain a matter of discussion. We conclude that LSST offers great prospects for detecting multiply imaged SNe. Our predictions are effectively lower limits, as we only considered the most massive and well-studied clusters. We provide a recommendation for HLTDS observing field selection, namely: either MACS J0553.4-3342 or Abell 1758a should be observed by the survey.
A Comprehensive Catalog of Emission-line Nebulae, Star Clusters, and Supergiants in M31 from the LAMOST Spectroscopic Survey
Spectroscopic observations of various tracers in nearby galaxies, such as Andromeda (M31), play a crucial role in identifying and classifying individual stellar populations and nebular objects, thereby enhancing our understanding of galactic composition, environment, and dynamics as well as stellar evolution. While the LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) survey of M31 has produced extensive datasets, a comprehensive catalog of emission-line nebulae, star clusters, and supergiants is yet to be completed. In this paper, we present a final catalog of 384 emission-line nebulae, 380 star clusters, and 375 supergiants and candidates in M31, as carefully selected and identified from the LAMOST spectroscopic database. These objects were classified using a random forest algorithm, followed by thorough visual examinations of their spectral characteristics as well as morphologies revealed by archive images. For emission-line nebulae, we measured radial velocities and relative fluxes of emission lines, enabling further classification of planetary nebulae and HII regions. Additionally, we identified 245 emission-line nebulae in M33. This work lays the data foundation for the study of M31, and offers valuable tracers to investigate M31's structure and evolution.
Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves
Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.
XRISM Observations of Cassiopeia A: Overview, Atomic Data, and Spectral Models
Cassiopeia A (Cas A) is the youngest known core-collapse supernova remnant (SNR) in the Galaxy and is perhaps the best-studied SNR in X-rays. Cas A has a line-rich spectrum dominated by thermal emission and given its high flux, it is an appealing target for high-resolution X-ray spectroscopy. Cas A was observed at two different locations during the Performance Verification phase of the XRISM mission, one location in the southeastern part (SE) of the remnant and one in the northwestern part (NW). This paper serves as an overview of these observations and discusses some of the issues relevant for the analysis of the data. We present maps of the so-called ``spatial-spectral mixing'' effect due to the fact that the XRISM point-spread function is larger than a pixel in the Resolve calorimeter array. We analyze spectra from two bright, on-axis regions such that the effects of spatial-spectral mixing are minimized. We find that it is critical to include redshifts/blueshifts and broadening of the emission lines in the two thermal components to achieve a reasonable fit given the high spectral resolution of the Resolve calorimeter. We fit the spectra with two versions of the AtomDB atomic database (3.0.9 and 3.1.0) and two versions of the SPEX (3.08.00 and 3.08.01*) spectral fitting software. Overall we find good agreement between AtomDB 3.1.0 and SPEX 3.08.01* for the spectral models considered in this paper. The most significant difference we found between AtomDB 3.0.9 and 3.1.0 and between AtomDB 3.1.0 and SPEX 3.08.01* is the Ni abundance, with the new atomic data favoring a considerably lower (up to a factor of 3) Ni abundance. Both regions exhibit significantly enhanced abundances compared to Solar values indicating that supernova ejecta dominate the emission in these regions. We find that the abundance ratios of Ti/Fe, Mn/Fe, \& Ni/Fe are significantly lower in the NW than the SE.
A New Task: Deriving Semantic Class Targets for the Physical Sciences
We define deriving semantic class targets as a novel multi-modal task. By doing so, we aim to improve classification schemes in the physical sciences which can be severely abstracted and obfuscating. We address this task for upcoming radio astronomy surveys and present the derived semantic radio galaxy morphology class targets.
A Novel Sector-Based Algorithm for an Optimized Star-Galaxy Classification
This paper introduces a novel sector-based methodology for star-galaxy classification, leveraging the latest Sloan Digital Sky Survey data (SDSS-DR18). By strategically segmenting the sky into sectors aligned with SDSS observational patterns and employing a dedicated convolutional neural network (CNN), we achieve state-of-the-art performance for star galaxy classification. Our preliminary results demonstrate a promising pathway for efficient and precise astronomical analysis, especially in real-time observational settings.
Probing a diffuse flux of axion-like particles from galactic supernovae with neutrino water Cherenkov detectors
In this article, we claim that axion-like particles (ALPs) with MeV masses can be produced with semi-relativistic velocities in core-collapse supernovae (SNe), generating a diffuse galactic flux. We show that these ALPs can be detected in neutrino water Cherenkov detectors via a , p rightarrow p , gamma interactions. Using Super-Kamiokande data, we derive new constraints on the ALP parameter space, excluding a region spanning more than one order of magnitude in the ALP-proton coupling above cooling bounds for ALP masses in the range of 1-80 MeV and ALP-proton couplings between 6times10^{-6}-2times10^{-4}. We show that the future Hyper-Kamiokande will be able to probe couplings as small as 2times10^{-6}, fully closing the allowed region above SN 1987A cooling bounds.
Diprotodon on the sky. The Large Galactic Supernova Remnant (SNR) G278.94+1.35
We present a re-discovery of G278.94+1.35 as possibly one of the largest known Galactic supernova remnants (SNR) - that we name Diprotodon. While previously established as a Galactic SNR, Diprotodon is visible in our new EMU and GLEAM radio continuum images at an angular size of 3.33x3.23 deg, much larger than previously measured. At the previously suggested distance of 2.7 kpc, this implies a diameter of 157x152 pc. This size would qualify Diprotodon as the largest known SNR and pushes our estimates of SNR sizes to the upper limits. We investigate the environment in which the SNR is located and examine various scenarios that might explain such a large and relatively bright SNR appearance. We find that Diprotodon is most likely at a much closer distance of sim1 kpc, implying its diameter is 58x56 pc and it is in the radiative evolutionary phase. We also present a new Fermi-LAT data analysis that confirms the angular extent of the SNR in gamma-rays. The origin of the high-energy emission remains somewhat puzzling, and the scenarios we explore reveal new puzzles, given this unexpected and unique observation of a seemingly evolved SNR having a hard GeV spectrum with no breaks. We explore both leptonic and hadronic scenarios, as well as the possibility that the high-energy emission arises from the leftover particle population of a historic pulsar wind nebula.
Observational Signatures of Galactic Turbulent Dynamos
We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation.
Using angular momentum maps to detect kinematically distinct galactic components
In this work we introduce a physically motivated method of performing disc/spheroid decomposition of simulated galaxies, which we apply to the Eagle sample. We make use of the HEALPix package to create Mollweide projections of the angular momentum map of each galaxy's stellar particles. A number of features arise on the angular momentum space which allows us to decompose galaxies and classify them into different morphological types. We assign stellar particles with angular separation of less/greater than 30 degrees from the densest grid cell on the angular momentum sphere to the disc/spheroid components, respectively. We analyse the spatial distribution for a subsample of galaxies and show that the surface density profiles of the disc and spheroid closely follow an exponential and a Sersic profile, respectively. In addition discs rotate faster, have smaller velocity dispersions, are younger and are more metal rich than spheroids. Thus our morphological classification reproduces the observed properties of such systems. Finally, we demonstrate that our method is able to identify a significant population of galaxies with counter-rotating discs and provide a more realistic classification of such systems compared to previous methods.
The JWST Hubble Sequence: The Rest-Frame Optical Evolution of Galaxy Structure at 1.5 < z < 8
We present results on the morphological and structural evolution of a total of 4265 galaxies observed with JWST at 1.5 < z < 8 in the JWST CEERS observations that overlap with the CANDELS EGS field. This is the biggest visually classified sample observed with JWST yet, sim20 times larger than previous studies, and allows us to examine in detail how galaxy structure has changed over this critical epoch. All sources were classified by six individual classifiers using a simple classification scheme aimed to produce disk/spheroid/peculiar classifications, whereby we determine how the relative number of these morphologies evolves since the Universe's first billion years. Additionally, we explore structural and quantitative morphology measurements using Morfometryka, and show that galaxies at z > 3 are not dominated by irregular and peculiar structures, either visually or quantitatively, as previously thought. We find a strong dominance of morphologically selected disk galaxies up to z = 8, a far higher redshift than previously thought possible. We also find that the stellar mass and star formation rate densities are dominated by disk galaxies up to z sim 6, demonstrating that most stars in the universe were likely formed in a disk galaxy. We compare our results to theory to show that the fraction of types we find is predicted by cosmological simulations, and that the Hubble Sequence was already in place as early as one billion years after the Big Bang. Additionally, we make our visual classifications public for the community.
Unveiling two deeply embedded young protostars in the S68N Class 0 protostellar core with JWST/NIRSpec
The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 mum observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) that is modeled with a pre-main-sequence photosphere and a hot disk component. The photospheric parameters are consistent with a young, low-mass photosphere, as suggested by the low surface gravity, log g of 1.95 pm 0.15 cm s^{-2}. The hot disk suggests that accretion onto the central protostellar embryo is ongoing, although prototypical accretion-tracing emission lines HI are not detected. The South Central (SC) source, which is even more embedded (A_K ~ 8 mag; no continuum is detected shortward of 3.6 mum) appears to be driving the large-scale S68N protostellar outflow, and launches a collimated hot molecular jet detected in \Ht and CO ro-vibrational lines. Shock modeling of the \Ht (ro)vibrational lines establishes that fast C-type shocks (geq 30 km s^{-1}), with high pre-shock density (geq 10^7 cm^{-3}), and strong magnetic field (b ~ 3--10, where B = b,times,textrm{n_{H} (cm^{-3})},muG) best match the data. The bright CO fundamental line forest suggests energetic excitation, with the contribution of non-LTE effects, ie irradiation pumping. Detected OH and CH^{+} ro-vibrational lines support this hypothesis. These two Class 0 protostars seem to be in very young evolutionary stages and still have to acquire the bulk of their final stellar masses. These results demonstrate that JWST enables unprecedented diagnostics of these first stages of the protostellar evolutionary phase.
Evidence for a Massive Protocluster in S255N
S255N is a luminous far-infrared source that contains many indications of active star formation but lacks a prominent near-infrared stellar cluster. We present mid-infrared through radio observations aimed at exploring the evolutionary state of this region. Our observations include 1.3mm continuum and spectral line data from the Submillimeter Array, VLA 3.6cm continuum and 1.3cm water maser data, and multicolor IRAC images from the Spitzer Space Telescope. The cometary morphology of the previously-known UCHII region G192.584-0.041 is clearly revealed in our sensitive, multi-configuration 3.6cm images. The 1.3mm continuum emission has been resolved into three compact cores, all of which are dominated by dust emission and have radii < 7000AU. The mass estimates for these cores range from 6 to 35 Msun. The centroid of the brightest dust core (SMA1) is offset by 1.1'' (2800 AU) from the peak of the cometary UCHII region and exhibits the strongest HC3N, CN, and DCN line emission in the region. SMA1 also exhibits compact CH3OH, SiO, and H2CO emission and likely contains a young hot core. We find spatial and kinematic evidence that SMA1 may contain further multiplicity, with one of the components coincident with a newly-detected H2O maser. There are no mid-infrared point source counterparts to any of the dust cores, further suggesting an early evolutionary phase for these objects. The dominant mid-infrared emission is a diffuse, broadband component that traces the surface of the cometary UCHII region but is obscured by foreground material on its southern edge. An additional 4.5 micron linear feature emanating to the northeast of SMA1 is aligned with a cluster of methanol masers and likely traces a outflow from a protostar within SMA1. Our observations provide direct evidence that S255N is forming a cluster of intermediate to high-mass stars.
Tracing the Physical Lineage of GRB 211211A: Population Constraints on NS-WD Merger Gamma-Ray Bursts
The peculiar long gamma-ray burst (GRB) event, GRB 211211A, is known for it is association with a kilonova feature. Whereas most long GRBs are thought to originate in the core collapse of massive stars, the presence of kilonova suggests GRB 211211A was instead produced by a merger of a compact object binary. Building on the interpretation put forward by Yang2022Natur.612..232Y--who argue that GRB 211211A was powered by a massive white-dwarf + neutron-star (WD-NS) merger--we adopt this WD-NS scenario as our observationally supported starting point. If the burst truly originates from that channel, its rarity must mirror the formation and merger rate of WD-NS binaries--a rate still largely unexplored in conventional massive-binary population studies. In this letter, we present a qualitative analysis based on binary evolution physics in order to understand the fraction of GRB 211211A in short GRBs (NS-WD/NS-NS fraction). Since the progenitors of massive WD-NS binaries occupy the initial mass function-preferred regime, where the zero-age main-sequence mass range of the assumed WD mass range (1.2-1.4,M_odot) is comparable to that of NSs, the NS-WD/NS-NS fraction emerging from our standard evolutionary path is expected to be sim14--37\%, far higher than the observed fraction (sim5\%). This discrepancy might imply a large, still-unidentified population of GRB 211211A-like events or an unusual origin of the NS-such as being hypernova-born or accretion-induced-collapse-born. Placing these results in a broader compact-binary context, implications for black-hole systems are also discussed.
Evolution of the Accretion Disk and Corona During the Outburst of the Neutron Star Transient MAXI J1807+132
Low-mass X-ray binaries with a neutron star as the primary object show a complex array of phenomenology during outbursts. The observed variability in X-ray emission primarily arises from changes in the innermost regions of the accretion disk, neutron star surface, and corona. In this work, we present the results of a comprehensive X-ray spectral and timing analysis of the neutron star transient MAXI J1807+132 during its 2023 outburst using data from the NICER observatory. The outburst is marked by a very rapid rise in the count rate by about a factor of 20 in a day. The source undergoes full state transitions and displays hysteresis effect in the hardness and rms intensity diagrams. Spectral analysis with a three-component model is consistent with disk truncation during the hard states and reaching the last stable orbit during the intermediate and soft states. We discuss the different values of the last stable radius in the context of possible distance of the source and magnetic field strength. The characteristic frequencies throughout the hard and intermediate states are found to be strongly correlated with the inner radius of the disk. Together with the spectral and fast variability properties, we attempt to trace the evolution of the size of the corona along the outburst. Following the main outburst, the source undergoes a high amplitude reflare wherein it shows a complex behavior with relatively high variability (10 %), but low hardness.
The complex evolution of supermassive black holes in cosmological simulations
We present here self-consistent zoom-in simulations of massive galaxies forming in a full cosmological setting. The simulations are run with an updated version of the KETJU code, which is able to resolve the gravitational dynamics of their supermassive black holes, while simultaneously modelling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation and stellar and AGN feedback. The KETJU code is able to accurately model the complex behaviour of multiple SMBHs, including dynamical friction, stellar scattering and gravitational wave emission, and also to resolve Lidov-Kozai oscillations that naturally occur in hierarchical triplet SMBH systems. In general most of the SMBH binaries form at moderately high eccentricities, with typical values in the range of e =0.6-0.95, meaning that the circular binary models that are commonly used in the literature are insufficient for capturing the typical binary evolution.
Inflationary Attractors Predictions for Static Neutron Stars in the Mass-Gap Region
In this work we study static neutron stars in the context of several inflationary models which are popular in cosmology. These inflationary models are non-minimally coupled scalar theories which yield a viable inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from inflationary theories, which basically determine the values of the potential strength, usually considered as a free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-Volkoff equations using a solid python-3 LSODA integrator. For our study we consider several popular inflationary models, such as the universal attractors, the R^p attractors (three distinct model values), the induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b. We construct the M-R diagram and we confront the resulting theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars produced by all the inflationary models we considered are compatible with all the constraints for the MPA1 equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron stars are in the mass-gap region with M>2.5M_{odot}, but lower than the 3 solar masses causal limit. We also make the observation that as the NICER constraints are pushed towards larger radii, as for example in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron stars with maximum masses in the mass gap region, with M>2.5M_{odot}, but lower than the 3 solar masses causal limit, are favored and are compatible with the modified NICER constraints.
Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)
We describe the simulated data sample for the "Photometric LSST Astronomical Time Series Classification Challenge" (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey Telescope (LSST), a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to 2018 December 17, and included 1,094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at https://doi.org/10.5281/zenodo.2612896. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of type Ia supernova used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models.
Rapidly rotating hot nuclear and hypernuclear compact stars: integral parameters and universal relations
In this work, we investigate hot, isentropic compact stars in the limiting cases of static and maximally rotating configurations, focusing on how variations in the symmetry energy of the equation of state derived from covariant density functional theory affect stellar properties. We consider both nucleonic and hyperonic matter with systematically varied symmetry energy slopes, fixed entropies per baryon s / k_B=1 and 3, and electron fractions Y_e=0.1 and Y_e=0.4, representative of conditions in binary neutron star mergers and proto-neutron stars. We compute and analyze mass--radius and moment--of--inertia--mass relations, as well as the dependence of the Keplerian (mass-shedding) frequency on mass, angular momentum, and the ratio of kinetic to gravitational energy. Furthermore, we show that several universal relations between global properties remain valid across both nucleonic and hyperonic equations of state with varying symmetry energy, both in the static and Keplerian limit, and for various combinations of the fixed entropy and electron fraction.
Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation
Observational astronomy relies on visual feature identification to detect critical astrophysical phenomena. While machine learning (ML) increasingly automates this process, models often struggle with generalization in large-scale surveys due to the limited representativeness of labeled datasets -- whether from simulations or human annotation -- a challenge pronounced for rare yet scientifically valuable objects. To address this, we propose a conditional diffusion model to synthesize realistic galaxy images for augmenting ML training data. Leveraging the Galaxy Zoo 2 dataset which contains visual feature -- galaxy image pairs from volunteer annotation, we demonstrate that our model generates diverse, high-fidelity galaxy images closely adhere to the specified morphological feature conditions. Moreover, this model enables generative extrapolation to project well-annotated data into unseen domains and advancing rare object detection. Integrating synthesized images into ML pipelines improves performance in standard morphology classification, boosting completeness and purity by up to 30\% across key metrics. For rare object detection, using early-type galaxies with prominent dust lane features ( sim0.1\% in GZ2 dataset) as a test case, our approach doubled the number of detected instances from 352 to 872, compared to previous studies based on visual inspection. This study highlights the power of generative models to bridge gaps between scarce labeled data and the vast, uncharted parameter space of observational astronomy and sheds insight for future astrophysical foundation model developments. Our project homepage is available at https://galaxysd-webpage.streamlit.app/.
A catalog of ringed galaxies in the TNG50 simulation: Analysis of their properties and structure
The catalog of ringed galaxies was compiled through visual classification of synthetic images from the TNG50 simulation. Galaxies were selected based on specific criteria: a redshift range of 0.01 < z < 0.1, stellar mass M_star >10^9 M_odot, stellar half-mass radius r_{50} > 1 kpc, and specific star formation rate (sSFR), log(sSFR/yr^{-1}) > -13. Our classification allowed for differentiation between inner rings, outer rings, combinations of rings, and partial rings (pseudo-rings), including barred and non-barred ringed galaxies. We constructed a control sample of non-ringed galaxies with similar redshift, stellar mass, and environmental density distributions. We identified 807 ringed galaxies. Approximately 59% possess an inner ring, 22% a partial ring, 12% an outer ring, and 7% have i+o rings. Our statistical analysis reveals that 64% (507 galaxies) exhibit bars. Ringed galaxies exhibit lower efficiency for star formation, reduced gas fractions, redder colors, and higher metallicities compared to non-ringed disk objects. They also show greater variability in metallicity for a given stellar mass. From the analysis of radial profiles, galaxies with outer rings exhibit a r_{50} similar to or slightly larger than their control group, while those with inner or partial rings tend to have smaller sizes. A deeper exploration of radial density profiles revealed a pronounced central mass deficit preceding the ring structures, with inner and outer rings located at r_{50} and 1.5 , r_{50}, respectively. Galaxies with both i+o rings have inner rings that are more compact and massive. Additionally, galaxies with partial rings exhibit deeper mass profiles than their controls, particularly in central areas. These findings improve our understanding of galactic evolution and the complex interplay between mass distribution and morphology.
Discovery of 118 New Ultracool Dwarf Candidates Using Machine Learning Techniques
We present the discovery of 118 new ultracool dwarf candidates, discovered using a new machine learning tool, named SMDET, applied to time series images from the Wide-field Infrared Survey Explorer. We gathered photometric and astrometric data to estimate each candidate's spectral type, distance, and tangential velocity. This sample has a photometrically estimated spectral class distribution of 28 M dwarfs, 64 L dwarfs, and 18 T dwarfs. We also identify a T subdwarf candidate, two extreme T subdwarf candidates, and two candidate young ultracool dwarfs. Five objects did not have enough photometric data for any estimations to be made. To validate our estimated spectral types, spectra were collected for 2 objects, yielding confirmed spectral types of T5 (estimated T5) and T3 (estimated T4). Demonstrating the effectiveness of machine learning tools as a new large-scale discovery technique.
Deep Synoptic Array Science: Searching for Long Duration Radio Transients with the DSA-110
We describe the design and commissioning tests for the DSA-110 Not-So-Fast Radio Burst (NSFRB) search pipeline, a 1.4 GHz image-plane single-pulse search sensitive to 134 ms-160.8 s radio bursts. Extending the pulse width range of the Fast Radio Burst (FRB) search by 3 orders of magnitude, the NSFRB search is sensitive to the recently-discovered Galactic Long Period Radio Transients (LPRTs). The NSFRB search operates in real-time, utilizing a custom GPU-accelerated search code, cerberus, implemented in Python with JAX. We summarize successful commissioning sensitivity tests with continuum sources and pulsar B0329+54, estimating the 6sigma flux (fluence) threshold to be ~290 mJy (~40 Jy ms). Future tests of recovery of longer timescale transients, e.g. CHIME J1634+44, are planned to supplement injection testing and B0329+54 observations. An offline DSA-110 NSFRB Galactic Plane Survey was conducted to search for LPRTs, covering -3.5^circ<b<5.7^circ and 141^circ<l<225^circ (~770 square degrees) in Galactic coordinates. We estimate an upper limit Poissonian burst rate ~1 hr^{-1} per square degree (~7 hr^{-1} per 3^circtimes3^circ survey grid cell) maximized across the inner |b|<0.25^circ of the surveyed region. By imposing the ~290 mJy flux limit on two representative models (the magnetar plastic flow model and the White Dwarf-M Dwarf binary model), we reject with 95% confidence the presence of White Dwarf-M Dwarf binary LPRTs with periods between ~10-70s within ~95% of the surveyed region. Combined with the prevalence of LPRTs in the Galactic Plane, our results motivate further consideration of both White Dwarf-M Dwarf binary models and isolated magnetar models. We will continue to explore novel LPRT search strategies during real-time operations, such as triggered periodicity searches and additional targeted surveys.
Supernova Event Dataset: Interpreting Large Language Model's Personality through Critical Event Analysis
Large Language Models (LLMs) are increasingly integrated into everyday applications. As their influence grows, understanding their decision making and underlying personality becomes essential. In this work, we interpret model personality using our proposed Supernova Event Dataset, a novel dataset with diverse articles spanning biographies, historical events, news, and scientific discoveries. We use this dataset to benchmark LLMs on extracting and ranking key events from text, a subjective and complex challenge that requires reasoning over long-range context and modeling causal chains. We evaluate small models like Phi-4, Orca 2, and Qwen 2.5, and large, stronger models such as Claude 3.7, Gemini 2.5, and OpenAI o3, and propose a framework where another LLM acts as a judge to infer each model's personality based on its selection and classification of events. Our analysis shows distinct personality traits: for instance, Orca 2 demonstrates emotional reasoning focusing on interpersonal dynamics, while Qwen 2.5 displays a more strategic, analytical style. When analyzing scientific discovery events, Claude Sonnet 3.7 emphasizes conceptual framing, Gemini 2.5 Pro prioritizes empirical validation, and o3 favors step-by-step causal reasoning. This analysis improves model interpretability, making them user-friendly for a wide range of diverse applications.
Citizen Science Identification of Isolated Blue Stellar Systems in the Virgo cluster
We present a catalog of 34 new candidate (13 high confidence) isolated, young stellar systems within the Virgo galaxy cluster identified through a citizen science search of public optical and ultraviolet imaging. "Blue blobs" are a class of blue, faint, isolated, extremely low stellar mass, and metal-rich star-forming clouds embedded in the hot intracluster medium of the Virgo cluster. Only six blue blobs were known previously and here we confirm an additional six of our candidates through velocity and metallicity measurements from follow-up optical spectroscopy on the Hobby-Eberly Telescope (HET). Our 13 high confidence candidates (including the six confirmed) have properties consistent with prior known blue blobs and are inconsistent with being low-mass galaxies. Most candidates are concentrated in relatively dense regions, roughly following filamentary structures within the cluster, but avoiding its center. Three of our candidates are likely the stellar counterparts of known 'optically dark' clouds of neutral hydrogen in the cluster, while a further four are widely separated extensions to previously known blue blobs. The properties of our new candidates are consistent with previous conclusions that blue blobs likely originated from ram pressure stripping events, however, their locations in velocity--projected cluster-centric radius phase-space imply that their parent galaxies are not on their first infall into the cluster. Through our ongoing follow-up program with HET we aim to confirm additional candidates, however, detailed understanding of the stellar populations and star formation histories of blue blobs will require JWST observations.
A Survey of Novae in M83
The results of the first synoptic survey of novae in the barred spiral and starburst galaxy, M83 (NGC 5236), are presented. A total of 19 novae and one background supernova were discovered during the course of a nearly seven-year survey comprised of over 200 individual nights of observation between 2012 December 12 and 2019 March 14. After correcting for the limiting magnitude and the spatial and temporal coverage of the survey, the nova rate in M83 was found to be R=19^{+5}_{-3} yr^{-1}. This rate, when normalized to the K-band luminosity of the galaxy, yields a luminosity-specific nova rate, nu_K = 3.0^{+0.9}_{-0.6}times10^{-10} yr^{-1} L_{odot,K}^{-1}. The spatial distribution of the novae is found to be more extended than the overall galaxy light suggesting that the observed novae are likely dominated by a disk population. This result is consistent with the observed nova light curves which reveal that the M83 novae are on average more luminous at maximum light and fade faster when compared with novae observed in M31. Generally, the more luminous M83 novae were observed to fade more rapidly, with the complete sample being broadly consistent with a linear Maximum-Magnitude vs Rate of Decline relation.
Adaptive Detection of Fast Moving Celestial Objects Using a Mixture of Experts and Physical-Inspired Neural Network
Fast moving celestial objects are characterized by velocities across the celestial sphere that significantly differ from the motions of background stars. In observational images, these objects exhibit distinct shapes, contrasting with the typical appearances of stars. Depending on the observational method employed, these celestial entities may be designated as near-Earth objects or asteroids. Historically, fast moving celestial objects have been observed using ground-based telescopes, where the relative stability of stars and Earth facilitated effective image differencing techniques alongside traditional fast moving celestial object detection and classification algorithms. However, the growing prevalence of space-based telescopes, along with their diverse observational modes, produces images with different properties, rendering conventional methods less effective. This paper presents a novel algorithm for detecting fast moving celestial objects within star fields. Our approach enhances state-of-the-art fast moving celestial object detection neural networks by transforming them into physical-inspired neural networks. These neural networks leverage the point spread function of the telescope and the specific observational mode as prior information; they can directly identify moving fast moving celestial objects within star fields without requiring additional training, thereby addressing the limitations of traditional techniques. Additionally, all neural networks are integrated using the mixture of experts technique, forming a comprehensive fast moving celestial object detection algorithm. We have evaluated our algorithm using simulated observational data that mimics various observations carried out by space based telescope scenarios and real observation images. Results demonstrate that our method effectively detects fast moving celestial objects across different observational modes.
Super-Eddington Accretion in Quasars
This review provides an observational perspective on the fundamental properties of super-Eddington accretion onto supermassive black holes in quasars. It begins by outlining the selection criteria, particularly focusing on optical and UV broad-line intensity ratios, used to identify a population of unobscured super-Eddington candidates. Several defining features place these candidates at the extreme end of the Population A in main sequence of quasars: among them are the highest observed singly-ionized iron emission, extreme outflow velocities in UV resonance lines, and unusually high metal abundances. These key properties reflect the coexistence of a virialized sub-system within the broad-line region alongside powerful outflows, with the observed gas enrichment likely driven by nuclear or circumnuclear star formation. The most compelling evidence for the occurrence of super-Eddington accretion onto supermassive black holes comes from recent observations of massive black holes at early cosmic epochs. These black holes require rapid growth rates that are only achievable through radiatively inefficient super-Eddington accretion. Furthermore, extreme Eddington ratios, close to or slightly exceeding unity, are consistent with the saturation of radiative output per unit mass predicted by accretion disk theory for super-Eddington accretion rates. The extreme properties of super-Eddington candidates suggest that these quasars could make them stable and well-defined cosmological distance indicators, leveraging the correlation between broad-line width and luminosity expected in virialized systems. Finally, several analogies with accretion processes around stellar-mass black holes, particularly in the high/soft state, are explored to provide additional insight into the mechanisms driving super-Eddington accretion.
Disentangling axion-like particle couplings to nucleons via a delayed signal in Super-Kamiokande from a future supernova
In this work, we show that, if axion-like particles (ALPs) from core-collapse supernovae (SNe) couple to protons, they would produce very characteristic signatures in neutrino water Cherenkov detectors through their scattering off free protons via a , p rightarrow p , gamma interactions. Specifically, sub-MeV ALPs would generate photons with energies sim 30 MeV, which could be observed by Super-Kamiokande and Hyper-Kamiokande as a delayed signal after a future detection of SN neutrinos. We apply this to a hypothetical neighbouring SN (at a maximum distance of 100 kpc) and demonstrate that the region in the parameter space with ALP masses between 10^{-4} MeV and 1 MeV and ALP-proton couplings in the range 3 times 10^{-6}-4 times 10^{-5} could be probed. We argue that this new signature, combined with the one expected at sim 7 MeV from oxygen de-excitation, would allow us to disentangle ALP-neutron and ALP-proton couplings.
Wolf-Rayet Colliding Wind Binaries
Wolf-Rayet stars embody the final stable phase of the most massive stars immediately before their evolution is terminated in a supernova explosion. They are responsible for some of the most extreme and energetic phenomena in stellar physics, driving fast and dense stellar winds that are powered by extraordinarily high mass-loss rates arising from their near Eddington limit luminosity. When found in binary systems comprised of two hot wind-driving components, a colliding wind binary (CWB) is formed, manifesting dramatic observational signatures from the radio to X-rays. Among the wealth of rare and exotic phenomenology associated with CWBs, perhaps the most unexpected is the production of copious amounts of warm dust. A necessary condition seems to be one binary component being a carbon-rich WR star -- providing favorable chemistry for dust nucleation from the wind -- however a detailed understanding of the physics underlying this phenomenon has not been established.
Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise
In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.
The Tiny Time-series Transformer: Low-latency High-throughput Classification of Astronomical Transients using Deep Model Compression
A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time-domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. We showcase how the use of modern deep compression methods can achieve a 18times reduction in model size, whilst preserving classification performance. We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency, and thereby throughput of alerts, on the order of 8times for local processing, and 5times in a live production setting. To test this in a live setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules that exist in FINK. The results shown herein emphasise the time-series transformer's suitability for real-time classification at LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable inference of deep learning models for transient classification.
Impact of QCD sum rules coupling constants on neutron stars structure
We present a detailed investigation on the structure of neutron stars, incorporating the presence of hyperons within a relativistic model under the mean-field approximation. Employing coupling constants derived from QCD sum rules, we explore the particle fraction in beta equilibrium and establish the mass-radius relationship for neutron stars with hyperonic matter. Additionally, we compute the stellar Love number (K_{2}) and the tidal deformability parameter (varLambda), providing valuable insights into the dynamical properties of these celestial objects. Through comparison with theoretical predictions and observational data, our results exhibit good agreement, affirming the validity of our approach. These findings contribute significantly to refining the understanding of neutron star physics, particularly in environments containing hyperons, and offer essential constraints on the equation of state governing such extreme astrophysical conditions.
A slowly pulsating run-away B star at high Galactic latitude ejected from a spiral arm
We report the discovery of the young B6V run-away star LAMOST J083323.18+430825.4, 2.5\,kpc above the Galactic plane. Its atmospheric parameters and chemical composition are determined from LAMOST spectra, indicating normal composition. Effective temperature (Teff=14,500) and gravity (log g=3.79) suggest that the star is close to terminating hydrogen burning. An analysis of the spectral energy distribution allowed us to determine the angular diameter as well as the interstellar reddening. Using evolutionary models from the MIST database we derived the stellar mass (4.75Msun) and age (104^+11_-13 Myr). The spectroscopic distance (4.17 kpc), the radius (4.5 Rsun), and the luminosity (log(L/Lsun)=2.89) then result from the atmospheric parameters. Using Gaia proper motions, the trajectory is traced back to the Galactic disk to identify the place of birth in a spiral arm. The ejection velocity of 92 km s^{-1} is typical for runaway stars in the halo. The age of the star is larger than its time of flight (78+-4 Myr), which favors a binary supernova event as the likely ejection mechanism. The TESS light curve shows variations with a period of 3.58 days from which we conclude that it is a slowly pulsating B-star, one of very few run-away B-stars known to pulsate.
Spectrophotometry in the integrated light of multiple populations in globular clusters
There is vast evidence from observations of multiple stellar populations (MPs) in globular clusters (GCs). To explore the issue theoretically, this work considers two subsolar metallicities, two ages, and two initial abundance patterns: a first population of standard alpha-enhanced metal mixture stars and a second stellar population displaying C-N and Na-O anticorrelations chemical abundance patterns, along with an enhanced helium fraction. Analysing the predictions for these extreme compositions, we provide insights into the observability of not-resolved MPs into individual stars of GCs. We use colours and spectrophotometric indices measurable with modern facilities (e.g. Euclid, LSST, DES, JWST).
AstroMLab 1: Who Wins Astronomy Jeopardy!?
We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.
The growth of intermediate mass black holes through tidal captures and tidal disruption events
We present N-body simulations, including post-Newtonian dynamics, of dense clusters of low-mass stars harbouring central black holes (BHs) with initial masses of 50, 300, and 2000 M_{odot}. The models are evolved with the N-body code bifrost to investigate the possible formation and growth of massive BHs by the tidal capture of stars and tidal disruption events (TDEs). We model star-BH tidal interactions using a velocity-dependent drag force, which causes orbital energy and angular momentum loss near the BH. About sim 20-30 per cent of the stars within the spheres of influence of the black holes form Bahcall-Wolf cusps and prevent the systems from core collapse. Within the first 40 Myr of evolution, the systems experience 500 up to 1300 TDEs, depending on the initial cluster structure. Most (> 95 per cent) of the TDEs originate from stars in the Bahcall-Wolf cusp. We derive an analytical formula for the TDE rate as a function of the central BH mass, density and velocity dispersion of the clusters (N_{TDE} propto M_{BH} rho sigma^{-3}). We find that TDEs can lead a 300 M_{odot} BH to reach sim 7000 M_{odot} within a Gyr. This indicates that TDEs can drive the formation and growth of massive BHs in sufficiently dense environments, which might be present in the central regions of nuclear star clusters.
MiraBest: A Dataset of Morphologically Classified Radio Galaxies for Machine Learning
The volume of data from current and future observatories has motivated the increased development and application of automated machine learning methodologies for astronomy. However, less attention has been given to the production of standardised datasets for assessing the performance of different machine learning algorithms within astronomy and astrophysics. Here we describe in detail the MiraBest dataset, a publicly available batched dataset of 1256 radio-loud AGN from NVSS and FIRST, filtered to 0.03 < z < 0.1, manually labelled by Miraghaei and Best (2017) according to the Fanaroff-Riley morphological classification, created for machine learning applications and compatible for use with standard deep learning libraries. We outline the principles underlying the construction of the dataset, the sample selection and pre-processing methodology, dataset structure and composition, as well as a comparison of MiraBest to other datasets used in the literature. Existing applications that utilise the MiraBest dataset are reviewed, and an extended dataset of 2100 sources is created by cross-matching MiraBest with other catalogues of radio-loud AGN that have been used more widely in the literature for machine learning applications.
Widen the Resonance: Probing a New Regime of Neutrino Self-Interactions with Astrophysical Neutrinos
Neutrino self-interactions beyond the standard model have profound implications in astrophysics and cosmology. In this work, we study an uncharted scenario in which one of the three neutrino species has a mass much smaller than the temperature of the cosmic neutrino background. This results in a relativistic component that significantly broadens the absorption feature on the astrophysical neutrino spectra, in contrast to the sharply peaked absorption expected in the extensively studied scenarios assuming a fully nonrelativistic cosmic neutrino background. By solving the Boltzmann equations for neutrino absorption and regeneration, we demonstrate that this mechanism provides novel sensitivity to sub-keV mediator masses, well below the traditional sim 1--100 MeV range. Future observations of the diffuse supernova neutrino background with Hyper-Kamiokande could probe coupling strengths down to g sim 10^{-8}, surpassing existing constraints by orders of magnitude. These findings open new directions for discoveries and offer crucial insights into the interplay between neutrinos and the dark sector.
An Ensemble of Bayesian Neural Networks for Exoplanetary Atmospheric Retrieval
Machine learning is now used in many areas of astrophysics, from detecting exoplanets in Kepler transit signals to removing telescope systematics. Recent work demonstrated the potential of using machine learning algorithms for atmospheric retrieval by implementing a random forest to perform retrievals in seconds that are consistent with the traditional, computationally-expensive nested-sampling retrieval method. We expand upon their approach by presenting a new machine learning model, plan-net, based on an ensemble of Bayesian neural networks that yields more accurate inferences than the random forest for the same data set of synthetic transmission spectra. We demonstrate that an ensemble provides greater accuracy and more robust uncertainties than a single model. In addition to being the first to use Bayesian neural networks for atmospheric retrieval, we also introduce a new loss function for Bayesian neural networks that learns correlations between the model outputs. Importantly, we show that designing machine learning models to explicitly incorporate domain-specific knowledge both improves performance and provides additional insight by inferring the covariance of the retrieved atmospheric parameters. We apply plan-net to the Hubble Space Telescope Wide Field Camera 3 transmission spectrum for WASP-12b and retrieve an isothermal temperature and water abundance consistent with the literature. We highlight that our method is flexible and can be expanded to higher-resolution spectra and a larger number of atmospheric parameters.
Structure and Dynamics of the Young Massive Star Cluster Westerlund 1
We present a structural analysis of the young massive star cluster Westerlund 1 (Wd 1). With multi-epoch Hubble Space Telescope (HST) observations, we measure the proper motions of 10346 stars and determine their kinematic memberships by fitting a Gaussian mixture model to their proper motions. After correcting for extinction and completeness, we model the stellar density distribution and confirm the presence of an elongation with an eccentricity of 0.71. The eccentricity decreases slightly with increasing mass. We fit the radial profile with the Elson, Fall, and Freeman model, observing a decrease in the core radius with increasing mass, indicative of weak but detectable mass segregation. This finding is further supported by a measured mass segregation ratio of Lambda_rm MSR=1.11pm0.11, only above 1 by 1sigma, and slightly shorter minimum spanning tree length for higher mass bins. The cluster has a 1D velocity dispersion of 3.42 pm 0.10~km,s^{-1}, suggesting it is subvirial. The subvirial state implies either exceptionally high star formation efficiency or inefficient stellar feedback caused by local gas expulsion before stars reach the cluster. The crossing time is 0.30 Myr and the relaxation time is 0.26 Gyr. Given the age of Wd 1 of 10.7 Myr, we expect evident mass segregation for stars more massive than 10~M_odot, which accounts for the minor mass segregation found in the mass range of 1.00x201312.14~M_odot in this work. This suggests the overall mass segregation in Wd 1 is not primordial.
Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues
Dwarf galaxies serve as powerful laboratories for investigating the underlying physics of galaxy evolution including the impact of baryonic feedback processes and environmental influences. We compare the visual and structural properties of dwarf galaxies in ultra-deep HSC-SSP imaging of the COSMOS field with those measured from realistic HSC-like synthetic observations of dwarfs generated by the Illustris TNG50 and NewHorizon simulations. Using S\'ersic profile fitting and non-parametric morphological metrics (Gini, M_{20}, asymmetry, and concentration), we evaluate the diversity of structural properties in observed and simulated galaxies. Our analysis shows that NewHorizon and TNG50 galaxies lie at opposite extremes of observed structural trends: NewHorizon produces diffuse, extended galaxies with shallow S\'ersic indices, while TNG50 yields compact, concentrated systems with steep indices. Both simulations reproduce observed structural trends more closely at higher stellar masses (M_{star}sim10^{9.5} {rm M_{odot}}) but fail to capture the full diversity of COSMOS dwarfs at lower masses. Non-parametric metrics further show that NewHorizon galaxies exhibit more uneven, clumpy light distributions while TNG50 galaxies have smoother but excessively concentrated profiles. These structural differences reflect underlying differences in their physical prescriptions and are likely driven by differing approaches to ISM physics, supernova feedback and star formation in addition to differences in numerical resolution. Our findings highlight the unique power of low-mass galaxies to constrain differences in simulation physics, especially star formation and feedback. Upcoming surveys from facilities like the Vera C. Rubin Observatory and Euclid will enable more rigorous comparisons with simulations, offering deeper insights into the physical processes shaping galaxy evolution.
ALMA observations of massive clouds in the central molecular zone: slim filaments tracing parsec-scale shocks
The central molecular zone (CMZ) of our Galaxy exhibits widespread emission from SiO and various complex organic molecules (COMs), yet the exact origin of such emission is uncertain. Here we report the discovery of a unique class of long (>0.5 pc) and narrow (<0.03 pc) filaments in the emission of SiO 5-4 and eight additional molecular lines, including several COMs, in our ALMA 1.3 mm spectral line observations toward two massive molecular clouds in the CMZ, which we name as slim filaments. However, these filaments are not detected in the 1.3 mm continuum at the 5sigma level. Their line-of-sight velocities are coherent and inconsistent with being outflows. The column densities and relative abundances of the detected molecules are statistically similar to those in protostellar outflows but different from those in dense cores within the same clouds. Turbulent pressure in these filaments dominates over self gravity and leads to hydrostatic inequilibrium, indicating that they are a different class of objects than the dense gas filaments in dynamical equilibrium ubiquitously found in nearby molecular clouds. We argue that these newly detected slim filaments are associated with parsec-scale shocks, likely arising from dynamic interactions between shock waves and molecular clouds. The dissipation of the slim filaments may replenish SiO and COMs in the interstellar medium and lead to their widespread emission in the CMZ.
AstroMLab 4: Benchmark-Topping Performance in Astronomy Q&A with a 70B-Parameter Domain-Specialized Reasoning Model
General-purpose large language models, despite their broad capabilities, often struggle with specialized domain knowledge, a limitation particularly pronounced in more accessible, lower-parameter versions. This gap hinders their deployment as effective agents in demanding fields such as astronomy. Building on our prior work with AstroSage-8B, this study introduces AstroSage-70B, a significantly larger and more advanced domain-specialized natural-language AI assistant. It is designed for research and education across astronomy, astrophysics, space science, astroparticle physics, cosmology, and astronomical instrumentation. Developed from the Llama-3.1-70B foundation, AstroSage-70B underwent extensive continued pre-training on a vast corpus of astronomical literature, followed by supervised fine-tuning and model merging. Beyond its 70-billion parameter scale, this model incorporates refined datasets, judiciously chosen learning hyperparameters, and improved training procedures, achieving state-of-the-art performance on complex astronomical tasks. Notably, we integrated reasoning chains into the SFT dataset, enabling AstroSage-70B to either answer the user query immediately, or first emit a human-readable thought process. Evaluated on the AstroMLab-1 benchmark -- comprising 4,425 questions from literature withheld during training -- AstroSage-70B achieves state-of-the-art performance. It surpasses all other tested open-weight and proprietary models, including leading systems like o3, Gemini-2.5-Pro, Claude-3.7-Sonnet, Deepseek-R1, and Qwen-3-235B, even those with API costs two orders of magnitude higher. This work demonstrates that domain specialization, when applied to large-scale models, can enable them to outperform generalist counterparts in specialized knowledge areas like astronomy, thereby advancing the frontier of AI capabilities in the field.
RoBo6: Standardized MMT Light Curve Dataset for Rocket Body Classification
Space debris presents a critical challenge for the sustainability of future space missions, emphasizing the need for robust and standardized identification methods. However, a comprehensive benchmark for rocket body classification remains absent. This paper addresses this gap by introducing the RoBo6 dataset for rocket body classification based on light curves. The dataset, derived from the Mini Mega Tortora database, includes light curves for six rocket body classes: CZ-3B, Atlas 5 Centaur, Falcon 9, H-2A, Ariane 5, and Delta 4. With 5,676 training and 1,404 test samples, it addresses data inconsistencies using resampling, normalization, and filtering techniques. Several machine learning models were evaluated, including CNN and transformer-based approaches, with Astroconformer reporting the best performance. The dataset establishes a common benchmark for future comparisons and advancements in rocket body classification tasks.
Unveiling the soft X-ray source population towards the inner Galactic disk with XMM-Newton
Across the Galactic disk lies a diverse population of X-ray sources, with the fainter end remaining poorly understood due to past survey sensitivity limits. We aim to classify and characterize faint X-ray sources detected in the eROSITA All-Sky Survey (eRASS1) towards the inner Galactic disk (350^circ < l < 360^circ, -1^circ < b < 1^circ) using deeper XMM-Newton observations (typical exposure of sim 20,ks). We analyzed 189 eRASS1 sources, combining X-ray spectral fitting (0.2--10,keV) with Gaia astrometric and photometric data for robust classification. Our results show that the eRASS1 catalog towards the Galactic disk is overwhelmingly dominated by coronal sources (sim 74%), primarily active stars and binaries, with sim 8% being wind-powered massive stars and sim 18% being accreting compact objects. We propose an empirical hardness-ratio cut (HR > -0.2) to efficiently isolate these non-coronal sources. By stacking the classified population and comparing with the Galactic Ridge X-ray Emission (GRXE), we estimate that sim 6% of the GRXE flux in the 0.5--2.0,keV band is resolved into point sources above the eRASS1 flux limit (sim 5times 10^{-14},erg,cm^{-2},s^{-1}). This resolved soft-band emission is dominated by active stars, while hard-band flux originates primarily from X-ray binaries. We conclude that the eRASS1 catalog retains a non-negligible population of compact objects that can be effectively distinguished using X-ray color selection.
Digital Discovery of interferometric Gravitational Wave Detectors
Gravitational waves, detected a century after they were first theorized, are spacetime distortions caused by some of the most cataclysmic events in the universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate the application of artificial intelligence (AI) to systematically explore this enormous space, revealing novel topologies for gravitational wave (GW) detectors that outperform current next-generation designs under realistic experimental constraints. Our results span a broad range of astrophysical targets, such as black hole and neutron star mergers, supernovae, and primordial GW sources. Moreover, we are able to conceptualize the initially unorthodox discovered designs, emphasizing the potential of using AI algorithms not only in discovering but also in understanding these novel topologies. We've assembled more than 50 superior solutions in a publicly available Gravitational Wave Detector Zoo which could lead to many new surprising techniques. At a bigger picture, our approach is not limited to gravitational wave detectors and can be extended to AI-driven design of experiments across diverse domains of fundamental physics.
The S2 orbit and tidally disrupted binaries: indications for collisional depletion in the Galactic center
The properties of the stellar cluster surrounding Sagittarius A* can be assessed indirectly through the motion of the S-stars. Specifically, the current accuracy to which the prograde precession of the S2 star is measured allows to place significant constraints on the extended mass enclosed by its orbit. We suggest that high velocity destructive collisions (DCs) offer a natural mechanism for depleting the mass inside the S2 orbit, thus allowing to reconcile the measured precession and the existence of a dense stellar cluster. Such a solution is especially necessary when considering that stars are supplied to the inner part of the cluster by both dynamical relaxation and by stars being captured in tight orbits during tidal disruption of binaries. We use analytic arguments and results from simulations to demonstrate that in order to obtain a precession that is consistent with observations, collisional depletion is necessary if the capture rate is greater than a few 10^{-6} yr^{-1}. We also show that fluctuations arising from the finite number of stars cannot serve as an alternative to DCs for generating consistency with the observed S2 precession. We conclude that astrometric observations of the S-stars provide a meaningful indication that the inner part of our galactic center is shaped by collisional depletion, supporting the hypothesis that DCs occur in galactic nuclei at an astrophysically significant rate.
Galaxy Spectra neural Networks (GaSNets). I. Searching for strong lens candidates in eBOSS spectra using Deep Learning
With the advent of new spectroscopic surveys from ground and space, observing up to hundreds of millions of galaxies, spectra classification will become overwhelming for standard analysis techniques. To prepare for this challenge, we introduce a family of deep learning tools to classify features in one-dimensional spectra. As the first application of these Galaxy Spectra neural Networks (GaSNets), we focus on tools specialized at identifying emission lines from strongly lensed star-forming galaxies in the eBOSS spectra. We first discuss the training and testing of these networks and define a threshold probability, PL, of 95% for the high quality event detection. Then, using a previous set of spectroscopically selected strong lenses from eBOSS, confirmed with HST, we estimate a completeness of ~80% as the fraction of lenses recovered above the adopted PL. We finally apply the GaSNets to ~1.3M spectra to collect a first list of ~430 new high quality candidates identified with deep learning applied to spectroscopy and visually graded as highly probable real events. A preliminary check against ground-based observations tentatively shows that this sample has a confirmation rate of 38%, in line with previous samples selected with standard (no deep learning) classification tools and follow-up by Hubble Space Telescope. This first test shows that machine learning can be efficiently extended to feature recognition in the wavelength space, which will be crucial for future surveys like 4MOST, DESI, Euclid, and the Chinese Space Station Telescope (CSST).
Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs
Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.
Scaling Particle Collision Data Analysis
For decades, researchers have developed task-specific models to address scientific challenges across diverse disciplines. Recently, large language models (LLMs) have shown enormous capabilities in handling general tasks; however, these models encounter difficulties in addressing real-world scientific problems, particularly in domains involving large-scale numerical data analysis, such as experimental high energy physics. This limitation is primarily due to BPE tokenization's inefficacy with numerical data. In this paper, we propose a task-agnostic architecture, BBT-Neutron, which employs a binary tokenization method to facilitate pretraining on a mixture of textual and large-scale numerical experimental data. We demonstrate the application of BBT-Neutron to Jet Origin Identification (JoI), a critical categorization challenge in high-energy physics that distinguishes jets originating from various quarks or gluons. Our results indicate that BBT-Neutron achieves comparable performance to state-of-the-art task-specific JoI models. Furthermore, we examine the scaling behavior of BBT-Neutron's performance with increasing data volume, suggesting the potential for BBT-Neutron to serve as a foundational model for particle physics data analysis, with possible extensions to a broad spectrum of scientific computing applications for Big Science experiments, industrial manufacturing and spacial computing. The project code is available at https://github.com/supersymmetry-technologies/bbt-neutron.
Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation
The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.
The first measurements of carbon isotopic ratios in post-RGB stars: SZ Mon and DF Cyg. E-iSpec: A spectral analysis tool to derive elemental abundances and isotopic ratios for evolved stars
Dusty post-red giant branch (post-RGB) stars are low- and intermediate-mass stars where the RGB evolution was prematurely terminated by a poorly understood binary interaction. These binary stars are considered to be low-luminosity analogues of post-asymptotic giant branch (post-AGB) binary stars. In this study, we investigated the chemical composition of two dusty post-RGB binary stars, SZ Mon and DF Cyg, using multi-wavelength spectroscopic data from HERMES/Mercator (optical) and the APOGEE survey (near-infrared). Owing to challenges posed by existing spectral analysis tools for the study of evolved stars with complex atmospheres, we developed E-iSpec: a dedicated spectral analysis tool for evolved stars, to consistently determine atmospheric parameters, elemental abundances, and carbon isotopic ratios. Our abundance analysis revealed that observed depletion patterns and estimated depletion efficiencies resemble those found in post-AGB binary stars. However, the onset of chemical depletion in post-RGB targets occurs at higher condensation temperatures (T_{rm turn-off, post-RGB}approx1400 K), than in most post-AGB stars (T_{rm turn-off, post-AGB}approx1100 K). Additionally, our study resulted in the first estimates of carbon isotopic ratios for post-RGB stars (^{12}C/^{13}C_{rm SZ Mon}=8pm4, ^{12}C/^{13}C_{rm DF Cyg}=12pm3). We found that the observationally derived CNO abundances and the carbon isotopic ratios of our post-RGB binary targets are in good agreement with theoretical predictions from the ATON single star evolutionary models involving first dredge-up and moderately-deep extra mixing. This agreement emphasises that in post-RGB binary targets, the observed CNO abundances reflect the chemical composition expected from single star nucleosynthesis (i.e., convective and non-convective mixing processes) occurring during the RGB phase before it is terminated.
Galaxy Spectra neural Network (GaSNet). II. Using Deep Learning for Spectral Classification and Redshift Predictions
Large sky spectroscopic surveys have reached the scale of photometric surveys in terms of sample sizes and data complexity. These huge datasets require efficient, accurate, and flexible automated tools for data analysis and science exploitation. We present the Galaxy Spectra Network/GaSNet-II, a supervised multi-network deep learning tool for spectra classification and redshift prediction. GaSNet-II can be trained to identify a customized number of classes and optimize the redshift predictions for classified objects in each of them. It also provides redshift errors, using a network-of-networks that reproduces a Monte Carlo test on each spectrum, by randomizing their weight initialization. As a demonstration of the capability of the deep learning pipeline, we use 260k Sloan Digital Sky Survey spectra from Data Release 16, separated into 13 classes including 140k galactic, and 120k extragalactic objects. GaSNet-II achieves 92.4% average classification accuracy over the 13 classes (larger than 90% for the majority of them), and an average redshift error of approximately 0.23% for galaxies and 2.1% for quasars. We further train/test the same pipeline to classify spectra and predict redshifts for a sample of 200k 4MOST mock spectra and 21k publicly released DESI spectra. On 4MOST mock data, we reach 93.4% accuracy in 10-class classification and an average redshift error of 0.55% for galaxies and 0.3% for active galactic nuclei. On DESI data, we reach 96% accuracy in (star/galaxy/quasar only) classification and an average redshift error of 2.8% for galaxies and 4.8% for quasars, despite the small sample size available. GaSNet-II can process ~40k spectra in less than one minute, on a normal Desktop GPU. This makes the pipeline particularly suitable for real-time analyses of Stage-IV survey observations and an ideal tool for feedback loops aimed at night-by-night survey strategy optimization.
Classification Done Right for Vision-Language Pre-Training
We introduce SuperClass, a super simple classification method for vision-language pre-training on image-text data. Unlike its contrastive counterpart CLIP who contrast with a text encoder, SuperClass directly utilizes tokenized raw text as supervised classification labels, without the need for additional text filtering or selection. Due to the absence of the text encoding as contrastive target, SuperClass does not require a text encoder and does not need to maintain a large batch size as CLIP does. SuperClass demonstrated superior performance on various downstream tasks, including classic computer vision benchmarks and vision language downstream tasks. We further explored the scaling behavior of SuperClass on model size, training length, or data size, and reported encouraging results and comparisons to CLIP. https://github.com/x-cls/superclass
Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory
We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.
CAvity DEtection Tool (CADET): Pipeline for automatic detection of X-ray cavities in hot galactic and cluster atmospheres
The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel and automated machine-learning pipeline called Cavity Detection Tool (CADET), developed to detect and estimate the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14 % at an 89 % true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5 % false-positive rate. When applied to real Chandra images, the pipeline recovered 91 out of 100 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered 8 new cavity pairs in atmospheres of early-type galaxies and galaxy clusters (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, NGC4472, NGC5129) and a number of potential cavity candidates.
KETJU -- resolving small-scale supermassive black hole dynamics in GADGET-4
We present the new public version of the KETJU supermassive black hole (SMBH) dynamics module, as implemented into GADGET-4. KETJU adds a small region around each SMBH where the dynamics of the SMBHs and stellar particles are integrated using an algorithmically regularised integrator instead of the leapfrog integrator with gravitational softening used by GADGET-4. This enables modelling SMBHs as point particles even during close interactions with stellar particles or other SMBHs, effectively removing the spatial resolution limitation caused by gravitational softening. KETJU also includes post-Newtonian corrections, which allows following the dynamics of SMBH binaries to sub-parsec scales and down to tens of Schwarzschild radii. Systems with multiple SMBHs are also supported, with the code also including the leading non-linear cross terms that appear in the post-Newtonian equations for such systems. We present tests of the code showing that it correctly captures, at sufficient mass resolution, the sinking driven by dynamical friction and binary hardening driven by stellar scattering. We also present an example application demonstrating how the code can be applied to study the dynamics of SMBHs in mergers of multiple galaxies and the effect they have on the properties of the surrounding galaxy. We expect that the presented KETJU SMBH dynamics module can also be straightforwardly incorporated into other codes similar to GADGET-4, which would allow coupling small-scale SMBH dynamics to the rich variety of galactic physics models that exist in the literature.
Cosmology with one galaxy?
Galaxies can be characterized by many internal properties such as stellar mass, gas metallicity, and star-formation rate. We quantify the amount of cosmological and astrophysical information that the internal properties of individual galaxies and their host dark matter halos contain. We train neural networks using hundreds of thousands of galaxies from 2,000 state-of-the-art hydrodynamic simulations with different cosmologies and astrophysical models of the CAMELS project to perform likelihood-free inference on the value of the cosmological and astrophysical parameters. We find that knowing the internal properties of a single galaxy allow our models to infer the value of Omega_{rm m}, at fixed Omega_{rm b}, with a sim10% precision, while no constraint can be placed on sigma_8. Our results hold for any type of galaxy, central or satellite, massive or dwarf, at all considered redshifts, zleq3, and they incorporate uncertainties in astrophysics as modeled in CAMELS. However, our models are not robust to changes in subgrid physics due to the large intrinsic differences the two considered models imprint on galaxy properties. We find that the stellar mass, stellar metallicity, and maximum circular velocity are among the most important galaxy properties to determine the value of Omega_{rm m}. We believe that our results can be explained taking into account that changes in the value of Omega_{rm m}, or potentially Omega_{rm b}/Omega_{rm m}, affect the dark matter content of galaxies. That effect leaves a distinct signature in galaxy properties to the one induced by galactic processes. Our results suggest that the low-dimensional manifold hosting galaxy properties provides a tight direct link between cosmology and astrophysics.
First Light and Reionisation Epoch Simulations (FLARES) XVII: Learning the galaxy-halo connection at high redshifts
Understanding the galaxy-halo relationship is not only key for elucidating the interplay between baryonic and dark matter, it is essential for creating large mock galaxy catalogues from N-body simulations. High-resolution hydrodynamical simulations are limited to small volumes by their large computational demands, hindering their use for comparisons with wide-field observational surveys. We overcome this limitation by using the First Light and Reionisation Epoch Simulations (FLARES), a suite of high-resolution (M_gas = 1.8 x 10^6 M_Sun) zoom simulations drawn from a large, (3.2 cGpc)^3 box. We use an extremely randomised trees machine learning approach to model the relationship between galaxies and their subhaloes in a wide range of environments. This allows us to build mock catalogues with dynamic ranges that surpass those obtainable through periodic simulations. The low cost of the zoom simulations facilitates multiple runs of the same regions, differing only in the random number seed of the subgrid models; changing this seed introduces a butterfly effect, leading to random differences in the properties of matching galaxies. This randomness cannot be learnt by a deterministic machine learning model, but by sampling the noise and adding it post-facto to our predictions, we are able to recover the distributions of the galaxy properties we predict (stellar mass, star formation rate, metallicity, and size) remarkably well. We also explore the resolution-dependence of our models' performances and find minimal depreciation down to particle resolutions of order M_DM ~ 10^8 M_Sun, enabling the future application of our models to large dark matter-only boxes.
First Light And Reionisation Epoch Simulations (FLARES) VI: The colour evolution of galaxies z=5-15
With its exquisite sensitivity, wavelength coverage, and spatial and spectral resolution, the James Webb Space Telescope is poised to revolutionise our view of the distant, high-redshift (z>5) Universe. While Webb's spectroscopic observations will be transformative for the field, photometric observations play a key role in identifying distant objects and providing more comprehensive samples than accessible to spectroscopy alone. In addition to identifying objects, photometric observations can also be used to infer physical properties and thus be used to constrain galaxy formation models. However, inferred physical properties from broadband photometric observations, particularly in the absence of spectroscopic redshifts, often have large uncertainties. With the development of new tools for forward modelling simulations it is now routinely possible to predict observational quantities, enabling a direct comparison with observations. With this in mind, in this work, we make predictions for the colour evolution of galaxies at z=5-15 using the FLARES: First Light And Reionisation Epoch Simulations cosmological hydrodynamical simulation suite. We predict a complex evolution, driven predominantly by strong nebular line emission passing through individual bands. These predictions are in good agreement with existing constraints from Hubble and Spitzer as well as some of the first results from Webb. We also contrast our predictions with other models in the literature: while the general trends are similar we find key differences, particularly in the strength of features associated with strong nebular line emission. This suggests photometric observations alone should provide useful discriminating power between different models.
Galaxy Zoo DECaLS: Detailed Visual Morphology Measurements from Volunteers and Deep Learning for 314,000 Galaxies
We present Galaxy Zoo DECaLS: detailed visual morphological classifications for Dark Energy Camera Legacy Survey images of galaxies within the SDSS DR8 footprint. Deeper DECaLS images (r=23.6 vs. r=22.2 from SDSS) reveal spiral arms, weak bars, and tidal features not previously visible in SDSS imaging. To best exploit the greater depth of DECaLS images, volunteers select from a new set of answers designed to improve our sensitivity to mergers and bars. Galaxy Zoo volunteers provide 7.5 million individual classifications over 314,000 galaxies. 140,000 galaxies receive at least 30 classifications, sufficient to accurately measure detailed morphology like bars, and the remainder receive approximately 5. All classifications are used to train an ensemble of Bayesian convolutional neural networks (a state-of-the-art deep learning method) to predict posteriors for the detailed morphology of all 314,000 galaxies. When measured against confident volunteer classifications, the networks are approximately 99% accurate on every question. Morphology is a fundamental feature of every galaxy; our human and machine classifications are an accurate and detailed resource for understanding how galaxies evolve.
Starkiller: subtracting stars and other sources from IFU spectroscopic data through forward modeling
We present starkiller, an open-source Python package for forward-modeling flux retrieval from integral field unit spectrograph (IFU) datacubes. Starkiller simultaneously provides stellar spectral classification, relative velocity, and line-of-sight extinction for all sources in a catalog, alongside a source-subtracted datacube. It performs synthetic difference imaging by simulating all catalog sources in the field of view, using the catalog for positions and fluxes to scale stellar models, independent of the datacube. This differencing method is particularly powerful for subtracting both point-sources and trailed or even streaked sources from extended astronomical objects. We demonstrate starkiller's effectiveness in improving observations of extended sources in dense stellar fields for VLT/MUSE observations of comets, asteroids and nebulae. We also show that starkiller can treat satellite-impacted VLT/MUSE observations. The package could be applied to tasks as varied as dust extinction in clusters and stellar variability; the stellar modeling using Gaia fluxes is provided as a standalone function. The techniques can be expanded to imagers and to other IFUs.
Metallicity and α-abundance for 48 million stars in low-extinction regions in the Milky Way
We estimate ([M/H], [alpha/M]) for 48 million giants and dwarfs in low-dust extinction regions from the Gaia DR3 XP spectra by using tree-based machine-learning models trained on APOGEE DR17 and metal-poor star sample from Li et al. The root mean square error of our estimation is 0.0890 dex for [M/H] and 0.0436 dex for [alpha/M], when we evaluate our models on the test data that are not used in training the models. Because the training data is dominated by giants, our estimation is most reliable for giants. The high-[alpha/M] stars and low-[alpha/M] stars selected by our ([M/H], [alpha/M]) show different kinematical properties for giants and low-temperature dwarfs. We further investigate how our machine-learning models extract information on ([M/H], [alpha/M]). Intriguingly, we find that our models seem to extract information on [alpha/M] from Na D lines (589 nm) and Mg I line (516 nm). This result is understandable given the observed correlation between Na and Mg abundances in the literature. The catalog of ([M/H], [alpha/M]) as well as their associated uncertainties are publicly available online.
Flashlights: An Off-Caustic Lensed Star at Redshift z = 1.26 in Abell 370
We report the discovery of a transient seen in a strongly lensed arc at redshift z_{rm s}=1.2567 in Hubble Space Telescope imaging of the Abell 370 galaxy cluster. The transient is detected at 29.51pm0.14 AB mag in a WFC3/UVIS F200LP difference image made using observations from two different epochs, obtained in the framework of the Flashlights program, and is also visible in the F350LP band (m_{rm F350LP} approx 30.53pm0.76 AB mag). The transient is observed on the negative-parity side of the critical curve at a distance of sim 0.6" from it, greater than previous examples of lensed stars. The large distance from the critical curve yields a significantly smaller macromagnification, but our simulations show that bright, O/B-type supergiants can reach sufficiently high magnifications to be seen at the observed position and magnitude. In addition, the observed transient image is a trailing image with an observer-frame time delay of sim+0.8 days from its expected counterpart, so that any transient lasting for longer than that should have also been seen on the minima side and is thus excluded. This, together with the blue colour we measure for the transient (m_{rm F200LP} - m_{rm F350LP} approx [-0.3,-1.6] AB), rules out most other transient candidates such as (kilo)novae, for example, and makes a lensed star the prime candidate. Assuming the transient is indeed a lensed star as suggested, many more such events should be detected in the near future in cluster surveys with the Hubble Space Telescope and James Webb Space Telescope.
Connecting GRBs from Binary Neutron Star Mergers to Nuclear Properties of Neutron Stars
The fate of the binary neutron star (NS) merger remnants hinges sensitively upon the NS equation of state and the threshold mass, M_{rm ls}, that separates a long-lived from a short-lived NS remnant. The nature of the electromagnetic counterparts is also influenced by the remnant type, particularly in determining whether a gamma-ray burst from a compact binary merger (cbGRB) is of short or long duration. We propose a novel approach to probe the threshold mass by linking it to the estimated observed ratio of long to short cbGRBs. We find that current observations broadly favour a relatively high value for this transition, M_{rm ls}simeq 1.3 M_{rm TOV}, for which M_{rm TOV} lesssim 2.6,M_odot , consistent with numerical simulations, as also shown here. Our results disfavour nuclear physics scenarios that would lead to catastrophic pressure loss at a few times nuclear density and temperatures of tens of MeV, leading to a rapid gravitational collapse of binaries with total mass M lesssim 1.3 M_{rm TOV}. Future individual gravitational wave events with on-axis cbGRBs can further bound M_{rm ls}.
Optical Emission Model for Binary Black Hole Merger Remnants Travelling through Discs of Active Galactic Nuclei
Active galactic nuclei (AGNs) have been proposed as plausible sites for hosting a sizable fraction of the binary black hole (BBH) mergers measured through gravitational waves (GWs) by the LIGO-Virgo-Kagra (LVK) experiment. These GWs could be accompanied by radiation feedback due to the interaction of the BBH merger remnant with the AGN disc. We present a new predicted radiation signature driven by the passage of a kicked BBH remnant throughout a thin AGN disc. We analyse the situation of a merger occurring outside the thin disc, where the merger is of second or higher generation in a merging hierarchical sequence. The coalescence produces a kicked BH remnant that eventually plunges into the disc, accretes material, and inflates jet cocoons. We consider the case of a jet cocoon propagating quasi-parallel to the disc plane and study the outflow that results when the cocoon emerges from the disc. We calculate the transient emission of the emerging cocoon using a photon diffusion model typically employed to describe the light curves of supernovae. Depending on the parameter configuration, the flare produced by the emerging cocoon could be comparable to or exceed the AGN background emission at optical, and extreme ultraviolet wavelengths. For instance, in AGNs with central engines of sim 5times10^{6} M_odot, flares driven by BH remnants with masses of sim 100 M_odot can appear in about sim[10-100] days after the GW, lasting for few days.
Modelling the accretion and feedback of supermassive black hole binaries in gas-rich galaxy mergers
We introduce a new model for the accretion and feedback of supermassive black hole (SMBH) binaries to the KETJU code, which enables us to resolve the evolution of SMBH binaries down to separations of tens of Schwarzschild radii in gas-rich galaxy mergers. Our subgrid binary accretion model extends the widely used Bondi--Hoyle--Lyttleton accretion into the binary phase and incorporates preferential mass accretion onto the secondary SMBH, which is motivated by results from small-scale hydrodynamical circumbinary disc simulations. We perform idealised gas-rich disc galaxy merger simulations using pure thermal or pure kinetic active galactic nuclei (AGN) feedback. Our binary accretion model provides more physically motivated SMBH mass ratios, which are one of the key parameters for computing gravitational wave (GW) induced recoil velocities. The merger time-scales of our simulated SMBH binaries are in the range t_{rm merge}{sim} 10--400 Myr. Prograde in-plane equal-mass galaxy mergers lead to the shortest merger time-scales, as they experience the strongest starbursts, with the ensuing high stellar density resulting in a rapid SMBH coalescence. Compared to the thermal AGN feedback, the kinetic AGN feedback predicts longer merger time-scales and results in more core-like stellar profiles, as it is more effective in removing gas from the galaxy centre and quenching star formation. This suggests that the AGN feedback implementation plays a critical role in modelling SMBH coalescences. Our model will be useful for improving the modelling of SMBH mergers in gas-rich galaxies, the prime targets for the upcoming LISA GW observatory.
SNAD catalogue of M-dwarf flares from the Zwicky Transient Facility
Most of the stars in the Universe are M spectral class dwarfs, which are known to be the source of bright and frequent stellar flares. In this paper, we propose new approaches to discover M-dwarf flares in ground-based photometric surveys. We employ two approaches: a modification of a traditional method of parametric fit search and a machine learning algorithm based on active anomaly detection. The algorithms are applied to Zwicky Transient Facility (ZTF) data release 8, which includes the data from the ZTF high-cadence survey, allowing us to reveal flares lasting from minutes to hours. We analyze over 35 million ZTF light curves and visually scrutinize 1168 candidates suggested by the algorithms to filter out artifacts, occultations of a star by an asteroid, and other types of known variable objects. The result of this analysis is the largest catalogue of ZTF flaring stars to date, representing 134 flares with amplitudes ranging from -0.2 to -4.6 magnitudes, including repeated flares. Using Pan-STARRS DR2 colors, we assign a spectral subclass to each object in the sample. For 13 flares with well-sampled light curves and available geometric distances from Gaia DR3, we estimate the bolometric energy. This research shows that the proposed methods combined with the ZTF's cadence strategy are suitable for identifying M-dwarf flares and other fast transients, allowing for the extraction of significant astrophysical information from their light curves.
RABBITS -- I. The crucial role of nuclear star formation in driving the coalescence of supermassive black hole binaries
In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we focus on the hardening and coalescing process of supermassive black hole (SMBH) binaries in galaxy mergers. For simulations including different galaxy formation processes (i.e. gas cooling, star formation, SMBH accretion, stellar and AGN feedback), we systematically control the effect of stochastic eccentricity by fixing it to similar values during the SMBH hardening phase. We find a strong correlation between the SMBH merger time-scales and the presence of nuclear star formation. Throughout the galaxy merging process, gas condenses at the centre due to cooling and tidal torques, leading to nuclear star formation. These recently formed stars, which inherit low angular momenta from the gas, contribute to the loss cone and assist in the SMBH hardening via three-body interactions. Compared to non-radiative hydrodynamical runs, the SMBH merger time-scales measured from the runs including cooling, stellar and SMBH physical processes tend to be shortened by a factor of {sim}1.7. After fixing the eccentricity to the range of e sim 0.6--0.8 during the hardening phase, the simulations with AGN feedback reveal merger time-scales of {sim} 100--500 Myr for disc mergers and {sim} 1--2 Gyr for elliptical mergers. With a semi-analytical approach, we find that the torque interaction between the binary and its circumbinary disc has minimal impact on the shrinking of the binary orbit in our retrograde galaxy merger. Our results are useful in improving the modelling of SMBH merger time-scales and gravitational wave event rates.
An efficient unsupervised classification model for galaxy morphology: Voting clustering based on coding from ConvNeXt large model
In this work, we update the unsupervised machine learning (UML) step by proposing an algorithm based on ConvNeXt large model coding to improve the efficiency of unlabeled galaxy morphology classifications. The method can be summarized into three key aspects as follows: (1) a convolutional autoencoder is used for image denoising and reconstruction and the rotational invariance of the model is improved by polar coordinate extension; (2) utilizing a pre-trained convolutional neural network (CNN) named ConvNeXt for encoding the image data. The features were further compressed via a principal component analysis (PCA) dimensionality reduction; (3) adopting a bagging-based multi-model voting classification algorithm to enhance robustness. We applied this model to I-band images of a galaxy sample with I_{rm mag}< 25 in the COSMOS field. Compared to the original unsupervised method, the number of clustering groups required by the new method is reduced from 100 to 20. Finally, we managed to classify about 53\% galaxies, significantly improving the classification efficiency. To verify the validity of the morphological classification, we selected massive galaxies with M(*)>10^{10}(M(sun)) for morphological parameter tests. The corresponding rules between the classification results and the physical properties of galaxies on multiple parameter surfaces are consistent with the existing evolution model. Our method has demonstrated the feasibility of using large model encoding to classify galaxy morphology, which not only improves the efficiency of galaxy morphology classification, but also saves time and manpower. Furthermore, in comparison to the original UML model, the enhanced classification performance is more evident in qualitative analysis and has successfully surpassed a greater number of parameter tests.
New Insights into Supradense Matter from Dissecting Scaled Stellar Structure Equations
The strong-field gravity in General Relativity (GR) realized in neutron stars (NSs) renders the Equation of State (EOS) P(varepsilon) of supradense neutron star (NS) matter to be essentially nonlinear and refines the upper bound for phiequiv P/varepsilon to be much smaller than the Special Relativity (SR) requirement with linear EOSs, where P and varepsilon are respectively the pressure and energy density of the system considered. Specifically, a tight bound philesssim0.374 is obtained by anatomizing perturbatively the intrinsic structures of the scaled Tolman--Oppenheimer--Volkoff (TOV) equations without using any input nuclear EOS. New insights gained from this novel analysis provide EOS-model independent constraints on properties (e.g., density profiles of the sound speed squared s^2=d P/dvarepsilon and trace anomaly Delta=1/3-phi) of cold supradense matter in NS cores. Using the gravity-matter duality in theories describing NSs, we investigate the impact of gravity on supradense matter EOS in NSs. In particular, we show that the NS mass M_{NS}, radius R and its compactness xiequiv M_{NS}/R scale with certain combinations of its central pressure and energy density (encapsulating its central EOS). Thus, observational data on these properties of NSs can straightforwardly constrain NS central EOSs without relying on any specific nuclear EOS-model.
AstroMLab 2: AstroLLaMA-2-70B Model and Benchmarking Specialised LLMs for Astronomy
Continual pretraining of large language models on domain-specific data has been proposed to enhance performance on downstream tasks. In astronomy, the previous absence of astronomy-focused benchmarks has hindered objective evaluation of these specialized LLM models. Leveraging a recent initiative to curate high-quality astronomical MCQs, this study aims to quantitatively assess specialized LLMs in astronomy. We find that the previously released AstroLLaMA series, based on LLaMA-2-7B, underperforms compared to the base model. We demonstrate that this performance degradation can be partially mitigated by utilizing high-quality data for continual pretraining, such as summarized text from arXiv. Despite the observed catastrophic forgetting in smaller models, our results indicate that continual pretraining on the 70B model can yield significant improvements. However, the current supervised fine-tuning dataset still constrains the performance of instruct models. In conjunction with this study, we introduce a new set of models, AstroLLaMA-3-8B and AstroLLaMA-2-70B, building upon the previous AstroLLaMA series.
The High-resolution Accretion Disks of Embedded protoStars (HADES) simulations. I. Impact of Protostellar Magnetic Fields on the Accretion Modes
How embedded, actively accreting low-mass protostars accrete their mass is still greatly debated. Observations are now piecing together the puzzle of embedded protostellar accretion, in particular with new facilities in the near-infrared. However, high-resolution theoretical models are still lacking, with a stark paucity of detailed simulations of these early phases. Here we present high-resolution non-ideal magneto-hydrodynamic simulations of a Solar mass protostar accreting at rates exceeding 10^{-6} M_{odot} yr^{-1}. We show the results of the accretion flow for four different protostellar magnetic fields, 10 G, 500 G, 1 kG, and 2 kG, combined with a disk magnetic field. For weaker (10 G and 500 G) protostar magnetic fields, accretion occurs via a turbulent boundary layer mode, with disk material impacting across the protostellar surface. In the 500 G model, the presence of a magnetically dominated outflow focuses the accretion towards the equator, slightly enhancing and ordering the accretion. For kG magnetic fields, the disk becomes truncated due to the protostellar dipole and exhibits magnetospheric accretion, with the 2 kG model having accretion bursts induced by the interchange instability. We present bolometric light curves for the models and find that they reproduce observations of Class I protostars from YSOVAR, with high bursts followed by an exponential decay possibly being a signature of instability-driven accretion. Finally, we present the filling fractions of accretion and find that 90\% of the mass is accreted in a surface area fraction of 10-20\%. These simulations will be extended in future work for a broader parameter space, with their high resolution and high temporal spacing able to explore a wide range of interesting protostellar physics.
