new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Are We Truly Forgetting? A Critical Re-examination of Machine Unlearning Evaluation Protocols

Machine unlearning is a process to remove specific data points from a trained model while maintaining the performance on retain data, addressing privacy or legal requirements. Despite its importance, existing unlearning evaluations tend to focus on logit-based metrics (i.e., accuracy) under small-scale scenarios. We observe that this could lead to a false sense of security in unlearning approaches under real-world scenarios. In this paper, we conduct a new comprehensive evaluation that employs representation-based evaluations of the unlearned model under large-scale scenarios to verify whether the unlearning approaches genuinely eliminate the targeted forget data from the model's representation perspective. Our analysis reveals that current state-of-the-art unlearning approaches either completely degrade the representational quality of the unlearned model or merely modify the classifier (i.e., the last layer), thereby achieving superior logit-based evaluation metrics while maintaining significant representational similarity to the original model. Furthermore, we introduce a rigorous unlearning evaluation setup, in which the forgetting classes exhibit semantic similarity to downstream task classes, necessitating that feature representations diverge significantly from those of the original model, thus enabling a more rigorous evaluation from a representation perspective. We hope our benchmark serves as a standardized protocol for evaluating unlearning algorithms under realistic conditions.

  • 3 authors
·
Mar 10

CodeWiki: Evaluating AI's Ability to Generate Holistic Documentation for Large-Scale Codebases

Given a large and evolving codebase, the ability to automatically generate holistic, architecture-aware documentation that captures not only individual functions but also cross-file, cross-module, and system-level interactions remains an open challenge. Comprehensive documentation is essential for long-term software maintenance and collaboration, yet current automated approaches still fail to model the rich semantic dependencies and architectural structures that define real-world software systems. We present CodeWiki, a unified framework for automated repository-level documentation across seven programming languages. CodeWiki introduces three key innovations: (i) hierarchical decomposition that preserves architectural context across multiple levels of granularity, (ii) recursive multi-agent processing with dynamic task delegation for scalable generation, and (iii) multi-modal synthesis that integrates textual descriptions with visual artifacts such as architecture diagrams and data-flow representations. To enable rigorous evaluation, we introduce CodeWikiBench, a comprehensive benchmark featuring multi-dimensional rubrics and LLM-based assessment protocols. Experimental results show that CodeWiki achieves a 68.79\% quality score with proprietary models, outperforming the closed-source DeepWiki baseline (64.06\%) by 4.73\%, with particularly strong improvements on high-level scripting languages (+10.47\%). We open-source CodeWiki to foster future research and community adoption.

  • 4 authors
·
Oct 28

ViPlan: A Benchmark for Visual Planning with Symbolic Predicates and Vision-Language Models

Integrating Large Language Models with symbolic planners is a promising direction for obtaining verifiable and grounded plans compared to planning in natural language, with recent works extending this idea to visual domains using Vision-Language Models (VLMs). However, rigorous comparison between VLM-grounded symbolic approaches and methods that plan directly with a VLM has been hindered by a lack of common environments, evaluation protocols and model coverage. We introduce ViPlan, the first open-source benchmark for Visual Planning with symbolic predicates and VLMs. ViPlan features a series of increasingly challenging tasks in two domains: a visual variant of the classic Blocksworld planning problem and a simulated household robotics environment. We benchmark nine open-source VLM families across multiple sizes, along with selected closed models, evaluating both VLM-grounded symbolic planning and using the models directly to propose actions. We find symbolic planning to outperform direct VLM planning in Blocksworld, where accurate image grounding is crucial, whereas the opposite is true in the household robotics tasks, where commonsense knowledge and the ability to recover from errors are beneficial. Finally, we show that across most models and methods, there is no significant benefit to using Chain-of-Thought prompting, suggesting that current VLMs still struggle with visual reasoning.

  • 8 authors
·
May 19 1

IMDL-BenCo: A Comprehensive Benchmark and Codebase for Image Manipulation Detection & Localization

A comprehensive benchmark is yet to be established in the Image Manipulation Detection & Localization (IMDL) field. The absence of such a benchmark leads to insufficient and misleading model evaluations, severely undermining the development of this field. However, the scarcity of open-sourced baseline models and inconsistent training and evaluation protocols make conducting rigorous experiments and faithful comparisons among IMDL models challenging. To address these challenges, we introduce IMDL-BenCo, the first comprehensive IMDL benchmark and modular codebase. IMDL-BenCo: i) decomposes the IMDL framework into standardized, reusable components and revises the model construction pipeline, improving coding efficiency and customization flexibility; ii) fully implements or incorporates training code for state-of-the-art models to establish a comprehensive IMDL benchmark; and iii) conducts deep analysis based on the established benchmark and codebase, offering new insights into IMDL model architecture, dataset characteristics, and evaluation standards. Specifically, IMDL-BenCo includes common processing algorithms, 8 state-of-the-art IMDL models (1 of which are reproduced from scratch), 2 sets of standard training and evaluation protocols, 15 GPU-accelerated evaluation metrics, and 3 kinds of robustness evaluation. This benchmark and codebase represent a significant leap forward in calibrating the current progress in the IMDL field and inspiring future breakthroughs. Code is available at: https://github.com/scu-zjz/IMDLBenCo.

  • 11 authors
·
Jun 15, 2024

DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research

Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.

CSVQA: A Chinese Multimodal Benchmark for Evaluating STEM Reasoning Capabilities of VLMs

Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal understanding, yet their capabilities for scientific reasoning remains inadequately assessed. Current multimodal benchmarks predominantly evaluate generic image comprehension or text-driven reasoning, lacking authentic scientific contexts that require domain-specific knowledge integration with visual evidence analysis. To fill this gap, we present CSVQA, a diagnostic multimodal benchmark specifically designed for evaluating scientific reasoning through domain-grounded visual question answering.Our benchmark features 1,378 carefully constructed question-answer pairs spanning diverse STEM disciplines, each demanding domain knowledge, integration of visual evidence, and higher-order reasoning. Compared to prior multimodal benchmarks, CSVQA places greater emphasis on real-world scientific content and complex reasoning.We additionally propose a rigorous evaluation protocol to systematically assess whether model predictions are substantiated by valid intermediate reasoning steps based on curated explanations. Our comprehensive evaluation of 15 VLMs on this benchmark reveals notable performance disparities, as even the top-ranked proprietary model attains only 49.6\% accuracy.This empirical evidence underscores the pressing need for advancing scientific reasoning capabilities in VLMs. Our CSVQA is released at https://huggingface.co/datasets/Skywork/CSVQA.

  • 9 authors
·
May 29 4

Data Scaling Laws in Imitation Learning for Robotic Manipulation

Data scaling has revolutionized fields like natural language processing and computer vision, providing models with remarkable generalization capabilities. In this paper, we investigate whether similar data scaling laws exist in robotics, particularly in robotic manipulation, and whether appropriate data scaling can yield single-task robot policies that can be deployed zero-shot for any object within the same category in any environment. To this end, we conduct a comprehensive empirical study on data scaling in imitation learning. By collecting data across numerous environments and objects, we study how a policy's generalization performance changes with the number of training environments, objects, and demonstrations. Throughout our research, we collect over 40,000 demonstrations and execute more than 15,000 real-world robot rollouts under a rigorous evaluation protocol. Our findings reveal several intriguing results: the generalization performance of the policy follows a roughly power-law relationship with the number of environments and objects. The diversity of environments and objects is far more important than the absolute number of demonstrations; once the number of demonstrations per environment or object reaches a certain threshold, additional demonstrations have minimal effect. Based on these insights, we propose an efficient data collection strategy. With four data collectors working for one afternoon, we collect sufficient data to enable the policies for two tasks to achieve approximately 90% success rates in novel environments with unseen objects.

  • 6 authors
·
Oct 24, 2024 2

T3: Test-Time Model Merging in VLMs for Zero-Shot Medical Imaging Analysis

In medical imaging, vision-language models face a critical duality: pretrained networks offer broad robustness but lack subtle, modality-specific characteristics, while fine-tuned expert models achieve high in-distribution accuracy yet falter under modality shift. Existing model-merging techniques, designed for natural-image benchmarks, are simple and efficient but fail to deliver consistent gains across diverse medical modalities; their static interpolation limits reliability in varied clinical tasks. To address this, we introduce Test-Time Task adaptive merging (T^3), a backpropagation-free framework that computes per-sample interpolation coefficients via the Jensen-Shannon divergence between the two models' output distributions. T^3 dynamically preserves local precision when models agree and defers to generalist robustness under drift. To overcome the inference costs of sample-wise merging, we further propose a batch-wise extension, T^3_B, that computes a merging coefficient across a batch of samples, dramatically reducing computational bottleneck. Recognizing the lack of a standardized medical-merging benchmark, we present a rigorous cross-evaluation protocol spanning in-domain, base-to-novel, and corruptions across four modalities. Empirically, T^3 sets new state-of-the-art in Top-1 accuracy and error reduction, outperforming strong baselines while maintaining efficiency, paving the way for adaptive MVLM deployment in clinical settings. Our code is available at https://github.com/Razaimam45/TCube.

  • 4 authors
·
Oct 31

ESGenius: Benchmarking LLMs on Environmental, Social, and Governance (ESG) and Sustainability Knowledge

We introduce ESGenius, a comprehensive benchmark for evaluating and enhancing the proficiency of Large Language Models (LLMs) in Environmental, Social and Governance (ESG) and sustainability-focused question answering. ESGenius comprises two key components: (i) ESGenius-QA, a collection of 1 136 multiple-choice questions generated by LLMs and rigorously validated by domain experts, covering a broad range of ESG pillars and sustainability topics. Each question is systematically linked to its corresponding source text, enabling transparent evaluation and supporting retrieval-augmented generation (RAG) methods; and (ii) ESGenius-Corpus, a meticulously curated repository of 231 foundational frameworks, standards, reports and recommendation documents from seven authoritative sources. Moreover, to fully assess the capabilities and adaptation potential of the model, we implement a rigorous two-stage evaluation protocol -- Zero-Shot and RAG. Extensive experiments across 50 LLMs (ranging from 0.5 B to 671 B parameters) demonstrate that state-of-the-art models achieve only moderate performance in zero-shot settings, with accuracies typically around 55--70\%, highlighting ESGenius's challenging nature for LLMs in interdisciplinary contexts. However, models employing RAG show significant performance improvements, particularly for smaller models. For example, "DeepSeek-R1-Distill-Qwen-14B" improves from 63.82\% (zero-shot) to 80.46\% with RAG. These results underscore the necessity of grounding responses in authoritative sources for enhanced ESG understanding. To the best of our knowledge, ESGenius is the first benchmark curated for LLMs and the relevant enhancement technologies that focuses on ESG and sustainability topics.

  • 12 authors
·
Jun 2

MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers

The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.

Salesforce Salesforce
·
Aug 20 10

Re:Verse -- Can Your VLM Read a Manga?

Current Vision Language Models (VLMs) demonstrate a critical gap between surface-level recognition and deep narrative reasoning when processing sequential visual storytelling. Through a comprehensive investigation of manga narrative understanding, we reveal that while recent large multimodal models excel at individual panel interpretation, they systematically fail at temporal causality and cross-panel cohesion, core requirements for coherent story comprehension. We introduce a novel evaluation framework that combines fine-grained multimodal annotation, cross-modal embedding analysis, and retrieval-augmented assessment to systematically characterize these limitations. Our methodology includes (i) a rigorous annotation protocol linking visual elements to narrative structure through aligned light novel text, (ii) comprehensive evaluation across multiple reasoning paradigms, including direct inference and retrieval-augmented generation, and (iii) cross-modal similarity analysis revealing fundamental misalignments in current VLMs' joint representations. Applying this framework to Re:Zero manga across 11 chapters with 308 annotated panels, we conduct the first systematic study of long-form narrative understanding in VLMs through three core evaluation axes: generative storytelling, contextual dialogue grounding, and temporal reasoning. Our findings demonstrate that current models lack genuine story-level intelligence, struggling particularly with non-linear narratives, character consistency, and causal inference across extended sequences. This work establishes both the foundation and practical methodology for evaluating narrative intelligence, while providing actionable insights into the capability of deep sequential understanding of Discrete Visual Narratives beyond basic recognition in Multimodal Models. Project Page: https://re-verse.vercel.app

  • 5 authors
·
Aug 11