new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

RAD: Towards Trustworthy Retrieval-Augmented Multi-modal Clinical Diagnosis

Clinical diagnosis is a highly specialized discipline requiring both domain expertise and strict adherence to rigorous guidelines. While current AI-driven medical research predominantly focuses on knowledge graphs or natural text pretraining paradigms to incorporate medical knowledge, these approaches primarily rely on implicitly encoded knowledge within model parameters, neglecting task-specific knowledge required by diverse downstream tasks. To address this limitation, we propose Retrieval-Augmented Diagnosis (RAD), a novel framework that explicitly injects external knowledge into multimodal models directly on downstream tasks. Specifically, RAD operates through three key mechanisms: retrieval and refinement of disease-centered knowledge from multiple medical sources, a guideline-enhanced contrastive loss that constrains the latent distance between multi-modal features and guideline knowledge, and the dual transformer decoder that employs guidelines as queries to steer cross-modal fusion, aligning the models with clinical diagnostic workflows from guideline acquisition to feature extraction and decision-making. Moreover, recognizing the lack of quantitative evaluation of interpretability for multimodal diagnostic models, we introduce a set of criteria to assess the interpretability from both image and text perspectives. Extensive evaluations across four datasets with different anatomies demonstrate RAD's generalizability, achieving state-of-the-art performance. Furthermore, RAD enables the model to concentrate more precisely on abnormal regions and critical indicators, ensuring evidence-based, trustworthy diagnosis. Our code is available at https://github.com/tdlhl/RAD.

Fudan-University Fudan University
·
Sep 24, 2025

Can World Simulators Reason? Gen-ViRe: A Generative Visual Reasoning Benchmark

While Chain-of-Thought (CoT) prompting enables sophisticated symbolic reasoning in LLMs, it remains confined to discrete text and cannot simulate the continuous, physics-governed dynamics of the real world. Recent video generation models have emerged as potential world simulators through Chain-of-Frames (CoF) reasoning -- materializing thought as frame-by-frame visual sequences, with each frame representing a physically-grounded reasoning step. Despite compelling demonstrations, a challenge persists: existing benchmarks, focusing on fidelity or alignment, do not assess CoF reasoning and thus cannot measure core cognitive abilities in multi-step planning, algorithmic logic, or abstract pattern extrapolation. This evaluation void prevents systematic understanding of model capabilities and principled guidance for improvement. We introduce Gen-ViRe (Generative Visual Reasoning Benchmark), a framework grounded in cognitive science and real-world AI applications, which decomposes CoF reasoning into six cognitive dimensions -- from perceptual logic to abstract planning -- and 24 subtasks. Through multi-source data curation, minimal prompting protocols, and hybrid VLM-assisted evaluation with detailed criteria, Gen-ViRe delivers the first quantitative assessment of video models as reasoners. Our experiments on SOTA systems reveal substantial discrepancies between impressive visual quality and actual reasoning depth, establishing baselines and diagnostic tools to advance genuine world simulators.

  • 5 authors
·
Nov 17, 2025 3

EvalAgent: Discovering Implicit Evaluation Criteria from the Web

Evaluation of language model outputs on structured writing tasks is typically conducted with a number of desirable criteria presented to human evaluators or large language models (LLMs). For instance, on a prompt like "Help me draft an academic talk on coffee intake vs research productivity", a model response may be evaluated for criteria like accuracy and coherence. However, high-quality responses should do more than just satisfy basic task requirements. An effective response to this query should include quintessential features of an academic talk, such as a compelling opening, clear research questions, and a takeaway. To help identify these implicit criteria, we introduce EvalAgent, a novel framework designed to automatically uncover nuanced and task-specific criteria. EvalAgent first mines expert-authored online guidance. It then uses this evidence to propose diverse, long-tail evaluation criteria that are grounded in reliable external sources. Our experiments demonstrate that the grounded criteria produced by EvalAgent are often implicit (not directly stated in the user's prompt), yet specific (high degree of lexical precision). Further, EvalAgent criteria are often not satisfied by initial responses but they are actionable, such that responses can be refined to satisfy them. Finally, we show that combining LLM-generated and EvalAgent criteria uncovers more human-valued criteria than using LLMs alone.

  • 6 authors
·
Apr 21, 2025

DeepResearch Bench II: Diagnosing Deep Research Agents via Rubrics from Expert Report

Deep Research Systems (DRS) aim to help users search the web, synthesize information, and deliver comprehensive investigative reports. However, how to rigorously evaluate these systems remains under-explored. Existing deep-research benchmarks often fall into two failure modes. Some do not adequately test a system's ability to analyze evidence and write coherent reports. Others rely on evaluation criteria that are either overly coarse or directly defined by LLMs (or both), leading to scores that can be biased relative to human experts and are hard to verify or interpret. To address these issues, we introduce Deep Research Bench II, a new benchmark for evaluating DRS-generated reports. It contains 132 grounded research tasks across 22 domains; for each task, a system must produce a long-form research report that is evaluated by a set of 9430 fine-grained binary rubrics in total, covering three dimensions: information recall, analysis, and presentation. All rubrics are derived from carefully selected expert-written investigative articles and are constructed through a four-stage LLM+human pipeline that combines automatic extraction with over 400 human-hours of expert review, ensuring that the criteria are atomic, verifiable, and aligned with human expert judgment. We evaluate several state-of-the-art deep-research systems on Deep Research Bench II and find that even the strongest models satisfy fewer than 50% of the rubrics, revealing a substantial gap between current DRSs and human experts.

  • 6 authors
·
Jan 13

Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences

Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.

  • 5 authors
·
Apr 18, 2024

Object Remover Performance Evaluation Methods using Class-wise Object Removal Images

Object removal refers to the process of erasing designated objects from an image while preserving the overall appearance, and it is one area where image inpainting is widely used in real-world applications. The performance of an object remover is quantitatively evaluated by measuring the quality of object removal results, similar to how the performance of an image inpainter is gauged. Current works reporting quantitative performance evaluations utilize original images as references. In this letter, to validate the current evaluation methods cannot properly evaluate the performance of an object remover, we create a dataset with object removal ground truth and compare the evaluations made by the current methods using original images to those utilizing object removal ground truth images. The disparities between two evaluation sets validate that the current methods are not suitable for measuring the performance of an object remover. Additionally, we propose new evaluation methods tailored to gauge the performance of an object remover. The proposed methods evaluate the performance through class-wise object removal results and utilize images without the target class objects as a comparison set. We confirm that the proposed methods can make judgments consistent with human evaluators in the COCO dataset, and that they can produce measurements aligning with those using object removal ground truth in the self-acquired dataset.

  • 4 authors
·
Apr 17, 2024

From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback

Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.

  • 6 authors
·
May 10, 2025

KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language

The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA

  • 2 authors
·
Mar 31, 2025 2

Automated Deep Learning: Neural Architecture Search Is Not the End

Deep learning (DL) has proven to be a highly effective approach for developing models in diverse contexts, including visual perception, speech recognition, and machine translation. However, the end-to-end process for applying DL is not trivial. It requires grappling with problem formulation and context understanding, data engineering, model development, deployment, continuous monitoring and maintenance, and so on. Moreover, each of these steps typically relies heavily on humans, in terms of both knowledge and interactions, which impedes the further advancement and democratization of DL. Consequently, in response to these issues, a new field has emerged over the last few years: automated deep learning (AutoDL). This endeavor seeks to minimize the need for human involvement and is best known for its achievements in neural architecture search (NAS), a topic that has been the focus of several surveys. That stated, NAS is not the be-all and end-all of AutoDL. Accordingly, this review adopts an overarching perspective, examining research efforts into automation across the entirety of an archetypal DL workflow. In so doing, this work also proposes a comprehensive set of ten criteria by which to assess existing work in both individual publications and broader research areas. These criteria are: novelty, solution quality, efficiency, stability, interpretability, reproducibility, engineering quality, scalability, generalizability, and eco-friendliness. Thus, ultimately, this review provides an evaluative overview of AutoDL in the early 2020s, identifying where future opportunities for progress may exist.

  • 4 authors
·
Dec 16, 2021

Human Vision Constrained Super-Resolution

Modern deep-learning super-resolution (SR) techniques process images and videos independently of the underlying content and viewing conditions. However, the sensitivity of the human visual system (HVS) to image details changes depending on the underlying image characteristics, such as spatial frequency, luminance, color, contrast, or motion; as well viewing condition aspects such as ambient lighting and distance to the display. This observation suggests that computational resources spent on up-sampling images/videos may be wasted whenever a viewer cannot resolve the synthesized details i.e the resolution of details exceeds the resolving capability of human vision. Motivated by this observation, we propose a human vision inspired and architecture-agnostic approach for controlling SR techniques to deliver visually optimal results while limiting computational complexity. Its core is an explicit Human Visual Processing Framework (HVPF) that dynamically and locally guides SR methods according to human sensitivity to specific image details and viewing conditions. We demonstrate the application of our framework in combination with network branching to improve the computational efficiency of SR methods. Quantitative and qualitative evaluations, including user studies, demonstrate the effectiveness of our approach in reducing FLOPS by factors of 2times and greater, without sacrificing perceived quality.

LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild

Deep research -- producing comprehensive, citation-grounded reports by searching and synthesizing information from hundreds of live web sources -- marks an important frontier for agentic systems. To rigorously evaluate this ability, four principles are essential: tasks should be (1) user-centric, reflecting realistic information needs, (2) dynamic, requiring up-to-date information beyond parametric knowledge, (3) unambiguous, ensuring consistent interpretation across users, and (4) multi-faceted and search-intensive, requiring search over numerous web sources and in-depth analysis. Existing benchmarks fall short of these principles, often focusing on narrow domains or posing ambiguous questions that hinder fair comparison. Guided by these principles, we introduce LiveResearchBench, a benchmark of 100 expert-curated tasks spanning daily life, enterprise, and academia, each requiring extensive, dynamic, real-time web search and synthesis. Built with over 1,500 hours of human labor, LiveResearchBench provides a rigorous basis for systematic evaluation. To evaluate citation-grounded long-form reports, we introduce DeepEval, a comprehensive suite covering both content- and report-level quality, including coverage, presentation, citation accuracy and association, consistency and depth of analysis. DeepEval integrates four complementary evaluation protocols, each designed to ensure stable assessment and high agreement with human judgments. Using LiveResearchBench and DeepEval, we conduct a comprehensive evaluation of 17 frontier deep research systems, including single-agent web search, single-agent deep research, and multi-agent systems. Our analysis reveals current strengths, recurring failure modes, and key system components needed to advance reliable, insightful deep research.

Salesforce Salesforce
·
Oct 15, 2025 3

The illusion of a perfect metric: Why evaluating AI's words is harder than it looks

Evaluating Natural Language Generation (NLG) is crucial for the practical adoption of AI, but has been a longstanding research challenge. While human evaluation is considered the de-facto standard, it is expensive and lacks scalability. Practical applications have driven the development of various automatic evaluation metrics (AEM), designed to compare the model output with human-written references, generating a score which approximates human judgment. Over time, AEMs have evolved from simple lexical comparisons, to semantic similarity models and, more recently, to LLM-based evaluators. However, it seems that no single metric has emerged as a definitive solution, resulting in studies using different ones without fully considering the implications. This paper aims to show this by conducting a thorough examination of the methodologies of existing metrics, their documented strengths and limitations, validation methods, and correlations with human judgment. We identify several key challenges: metrics often capture only specific aspects of text quality, their effectiveness varies by task and dataset, validation practices remain unstructured, and correlations with human judgment are inconsistent. Importantly, we find that these challenges persist in the most recent type of metric, LLM-as-a-Judge, as well as in the evaluation of Retrieval Augmented Generation (RAG), an increasingly relevant task in academia and industry. Our findings challenge the quest for the 'perfect metric'. We propose selecting metrics based on task-specific needs and leveraging complementary evaluations and advocate that new metrics should focus on enhanced validation methodologies.

  • 4 authors
·
Aug 19, 2025

Crossing the Linguistic Causeway: A Binational Approach for Translating Soundscape Attributes to Bahasa Melayu

Translation of perceptual descriptors such as the perceived affective quality attributes in the soundscape standard (ISO/TS 12913-2:2018) is an inherently intricate task, especially if the target language is used in multiple countries. Despite geographical proximity and a shared language of Bahasa Melayu (Standard Malay), differences in culture and language education policies between Singapore and Malaysia could invoke peculiarities in the affective appraisal of sounds. To generate provisional translations of the eight perceived affective attributes -- eventful, vibrant, pleasant, calm, uneventful, monotonous, annoying, and chaotic -- into Bahasa Melayu that is applicable in both Singapore and Malaysia, a binational expert-led approach supplemented by a quantitative evaluation framework was adopted. A set of preliminary translation candidates were developed via a four-stage process, firstly by a qualified translator, which was then vetted by linguistics experts, followed by examination via an experiential evaluation, and finally reviewed by the core research team. A total of 66 participants were then recruited cross-nationally to quantitatively evaluate the preliminary translation candidates. Of the eight attributes, cross-national differences were observed only in the translation of annoying. For instance, "menjengkelkan" was found to be significantly less understood in Singapore than in Malaysia, as well as less understandable than "membingitkan" within Singapore. Results of the quantitative evaluation also revealed the imperfect nature of foreign language translations for perceptual descriptors, which suggests a possibility for exploring corrective measures.

  • 7 authors
·
Jun 7, 2022

MedVision: Dataset and Benchmark for Quantitative Medical Image Analysis

Current vision-language models (VLMs) in medicine are primarily designed for categorical question answering (e.g., "Is this normal or abnormal?") or qualitative descriptive tasks. However, clinical decision-making often relies on quantitative assessments, such as measuring the size of a tumor or the angle of a joint, from which physicians draw their own diagnostic conclusions. This quantitative reasoning capability remains underexplored and poorly supported in existing VLMs. In this work, we introduce MedVision, a large-scale dataset and benchmark specifically designed to evaluate and improve VLMs on quantitative medical image analysis. MedVision spans 22 public datasets covering diverse anatomies and modalities, with 30.8 million image-annotation pairs. We focus on three representative quantitative tasks: (1) detection of anatomical structures and abnormalities, (2) tumor/lesion (T/L) size estimation, and (3) angle/distance (A/D) measurement. Our benchmarks show that current off-the-shelf VLMs perform poorly on these tasks. However, with supervised fine-tuning on MedVision, we significantly enhance their performance across detection, T/L estimation, and A/D measurement, demonstrating reduced error rates and improved precision. This work provides a foundation for developing VLMs with robust quantitative reasoning capabilities in medical imaging. Code and data are available at https://medvision-vlm.github.io.

  • 6 authors
·
Nov 23, 2025

Immunohistochemistry guided segmentation of benign epithelial cells, in situ lesions, and invasive epithelial cells in breast cancer slides

Digital pathology enables automatic analysis of histopathological sections using artificial intelligence (AI). Automatic evaluation could improve diagnostic efficiency and help find associations between morphological features and clinical outcome. For development of such prediction models, identifying invasive epithelial cells, and separating these from benign epithelial cells and in situ lesions would be the first step. In this study, we aimed to develop an AI model for segmentation of epithelial cells in sections from breast cancer. We generated epithelial ground truth masks by restaining hematoxylin and eosin (HE) sections with cytokeratin (CK) AE1/AE3, and by pathologists' annotations. HE/CK image pairs were used to train a convolutional neural network, and data augmentation was used to make the model more robust. Tissue microarrays (TMAs) from 839 patients, and whole slide images from two patients were used for training and evaluation of the models. The sections were derived from four cohorts of breast cancer patients. TMAs from 21 patients from a fifth cohort was used as a second test set. In quantitative evaluation, a mean Dice score of 0.70, 0.79, and 0.75 for invasive epithelial cells, benign epithelial cells, and in situ lesions, respectively, were achieved. In qualitative scoring (0-5) by pathologists, results were best for all epithelium and invasive epithelium, with scores of 4.7 and 4.4. Scores for benign epithelium and in situ lesions were 3.7 and 2.0. The proposed model segmented epithelial cells in HE stained breast cancer slides well, but further work is needed for accurate division between the classes. Immunohistochemistry, together with pathologists' annotations, enabled the creation of accurate ground truths. The model is made freely available in FastPathology and the code is available at https://github.com/AICAN-Research/breast-epithelium-segmentation

  • 11 authors
·
Nov 22, 2023

How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods

Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.

  • 3 authors
·
Aug 18, 2023

AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining

Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement.

  • 9 authors
·
Aug 10, 2025

CLR-Bench: Evaluating Large Language Models in College-level Reasoning

Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. QrightarrowA is utilized to measure the performance of direct answer prediction, and QrightarrowAR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% QrightarrowA to 39.00% QrightarrowAR, indicating an unsatisfactory reasoning ability.

  • 6 authors
·
Oct 23, 2024

NeurIPS 2025 E2LM Competition : Early Training Evaluation of Language Models

Existing benchmarks have proven effective for assessing the performance of fully trained large language models. However, we find striking differences in the early training stages of small models, where benchmarks often fail to provide meaningful or discriminative signals. To explore how these differences arise, this competition tackles the challenge of designing scientific knowledge evaluation tasks specifically tailored for measuring early training progress of language models. Participants are invited to develop novel evaluation methodologies or adapt existing benchmarks to better capture performance differences among language models. To support this effort, we provide three pre-trained small models (0.5B, 1B, and 3B parameters), along with intermediate checkpoints sampled during training up to 200B tokens. All experiments and development work can be run on widely available free cloud-based GPU platforms, making participation accessible to researchers with limited computational resources. Submissions will be evaluated based on three criteria: the quality of the performance signal they produce, the consistency of model rankings at 1 trillion tokens of training, and their relevance to the scientific knowledge domain. By promoting the design of tailored evaluation strategies for early training, this competition aims to attract a broad range of participants from various disciplines, including those who may not be machine learning experts or have access to dedicated GPU resources. Ultimately, this initiative seeks to make foundational LLM research more systematic and benchmark-informed from the earliest phases of model development.

  • 15 authors
·
Jun 9, 2025

Multi-LLM Thematic Analysis with Dual Reliability Metrics: Combining Cohen's Kappa and Semantic Similarity for Qualitative Research Validation

Qualitative research faces a critical reliability challenge: traditional inter-rater agreement methods require multiple human coders, are time-intensive, and often yield moderate consistency. We present a multi-perspective validation framework for LLM-based thematic analysis that combines ensemble validation with dual reliability metrics: Cohen's Kappa (κ) for inter-rater agreement and cosine similarity for semantic consistency. Our framework enables configurable analysis parameters (1-6 seeds, temperature 0.0-2.0), supports custom prompt structures with variable substitution, and provides consensus theme extraction across any JSON format. As proof-of-concept, we evaluate three leading LLMs (Gemini 2.5 Pro, GPT-4o, Claude 3.5 Sonnet) on a psychedelic art therapy interview transcript, conducting six independent runs per model. Results demonstrate Gemini achieves highest reliability (κ= 0.907, cosine=95.3%), followed by GPT-4o (κ= 0.853, cosine=92.6%) and Claude (κ= 0.842, cosine=92.1%). All three models achieve a high agreement (κ> 0.80), validating the multi-run ensemble approach. The framework successfully extracts consensus themes across runs, with Gemini identifying 6 consensus themes (50-83% consistency), GPT-4o identifying 5 themes, and Claude 4 themes. Our open-source implementation provides researchers with transparent reliability metrics, flexible configuration, and structure-agnostic consensus extraction, establishing methodological foundations for reliable AI-assisted qualitative research.

YaleUniversity Yale University
·
Dec 23, 2025 2

Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses

The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research has explored methodologies to enhance the effectiveness of feedback. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education. We examine the effectiveness of LLMs in evaluating student responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide both a quantitative score and qualitative feedback on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems. A similar approach was taken for training the SBERT model as well, while the GPT4 model used a zero-shot learning approach. We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers. The teachers utilized a shared rubric in assessing the accuracy and relevance of the generated feedback. We conduct both quantitative and qualitative analyses of the model performance. By offering a detailed comparison of these methods, this study aims to further the ongoing development of automated feedback systems and outlines potential future directions for leveraging generative LLMs to create more personalized learning experiences.

  • 7 authors
·
Oct 29, 2024

What are the best systems? New perspectives on NLP Benchmarking

In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.

  • 4 authors
·
Feb 8, 2022

MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at https://github.com/yuweihao/MM-Vet.

  • 8 authors
·
Aug 4, 2023

CritiQ: Mining Data Quality Criteria from Human Preferences

Language model heavily depends on high-quality data for optimal performance. Existing approaches rely on manually designed heuristics, the perplexity of existing models, training classifiers, or careful prompt engineering, which require significant expert experience and human annotation effort while introduce biases. We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality with only sim30 human-annotated pairs and performs efficient data selection. The main component, CritiQ Flow, employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments. We build a knowledge base that extracts quality criteria from previous work to boost CritiQ Flow. Compared to perplexity- and classifier- based methods, verbal criteria are more interpretable and possess reusable value. After deriving the criteria, we train the CritiQ Scorer to give quality scores and perform efficient data selection. We demonstrate the effectiveness of our method in the code, math, and logic domains, achieving high accuracy on human-annotated test sets. To validate the quality of the selected data, we continually train Llama 3.1 models and observe improved performance on downstream tasks compared to uniform sampling. Ablation studies validate the benefits of the knowledge base and the reflection process. We analyze how criteria evolve and the effectiveness of majority voting.

  • 11 authors
·
Feb 26, 2025 2

Rethinking Image Evaluation in Super-Resolution

While recent advancing image super-resolution (SR) techniques are continually improving the perceptual quality of their outputs, they can usually fail in quantitative evaluations. This inconsistency leads to a growing distrust in existing image metrics for SR evaluations. Though image evaluation depends on both the metric and the reference ground truth (GT), researchers typically do not inspect the role of GTs, as they are generally accepted as `perfect' references. However, due to the data being collected in the early years and the ignorance of controlling other types of distortions, we point out that GTs in existing SR datasets can exhibit relatively poor quality, which leads to biased evaluations. Following this observation, in this paper, we are interested in the following questions: Are GT images in existing SR datasets 100% trustworthy for model evaluations? How does GT quality affect this evaluation? And how to make fair evaluations if there exist imperfect GTs? To answer these questions, this paper presents two main contributions. First, by systematically analyzing seven state-of-the-art SR models across three real-world SR datasets, we show that SR performances can be consistently affected across models by low-quality GTs, and models can perform quite differently when GT quality is controlled. Second, we propose a novel perceptual quality metric, Relative Quality Index (RQI), that measures the relative quality discrepancy of image pairs, thus issuing the biased evaluations caused by unreliable GTs. Our proposed model achieves significantly better consistency with human opinions. We expect our work to provide insights for the SR community on how future datasets, models, and metrics should be developed.

  • 6 authors
·
Mar 17, 2025 2

AIM 2024 Challenge on UHD Blind Photo Quality Assessment

We introduce the AIM 2024 UHD-IQA Challenge, a competition to advance the No-Reference Image Quality Assessment (NR-IQA) task for modern, high-resolution photos. The challenge is based on the recently released UHD-IQA Benchmark Database, which comprises 6,073 UHD-1 (4K) images annotated with perceptual quality ratings from expert raters. Unlike previous NR-IQA datasets, UHD-IQA focuses on highly aesthetic photos of superior technical quality, reflecting the ever-increasing standards of digital photography. This challenge aims to develop efficient and effective NR-IQA models. Participants are tasked with creating novel architectures and training strategies to achieve high predictive performance on UHD-1 images within a computational budget of 50G MACs. This enables model deployment on edge devices and scalable processing of extensive image collections. Winners are determined based on a combination of performance metrics, including correlation measures (SRCC, PLCC, KRCC), absolute error metrics (MAE, RMSE), and computational efficiency (G MACs). To excel in this challenge, participants leverage techniques like knowledge distillation, low-precision inference, and multi-scale training. By pushing the boundaries of NR-IQA for high-resolution photos, the UHD-IQA Challenge aims to stimulate the development of practical models that can keep pace with the rapidly evolving landscape of digital photography. The innovative solutions emerging from this competition will have implications for various applications, from photo curation and enhancement to image compression.

  • 6 authors
·
Sep 24, 2024

Eureka: Evaluating and Understanding Large Foundation Models

Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.

  • 9 authors
·
Sep 13, 2024

AI Agents for the Dhumbal Card Game: A Comparative Study

This study evaluates Artificial Intelligence (AI) agents for Dhumbal, a culturally significant multiplayer card game with imperfect information, through a systematic comparison of rule-based, search-based, and learning-based strategies. We formalize Dhumbal's mechanics and implement diverse agents, including heuristic approaches (Aggressive, Conservative, Balanced, Opportunistic), search-based methods such as Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS), and reinforcement learning approaches including Deep Q-Network (DQN) and Proximal Policy Optimization (PPO), and a random baseline. Evaluation involves within-category tournaments followed by a cross-category championship. Performance is measured via win rate, economic outcome, Jhyap success, cards discarded per round, risk assessment, and decision efficiency. Statistical significance is assessed using Welch's t-test with Bonferroni correction, effect sizes via Cohen's d, and 95% confidence intervals (CI). Across 1024 simulated rounds, the rule-based Aggressive agent achieves the highest win rate (88.3%, 95% CI: [86.3, 90.3]), outperforming ISMCTS (9.0%) and PPO (1.5%) through effective exploitation of Jhyap declarations. The study contributes a reproducible AI framework, insights into heuristic efficacy under partial information, and open-source code, thereby advancing AI research and supporting digital preservation of cultural games.

  • 1 authors
·
Oct 10, 2025

ResearcherBench: Evaluating Deep AI Research Systems on the Frontiers of Scientific Inquiry

The emergence of deep research systems presents significant capabilities in problem-solving, extending from basic queries to sophisticated research tasks. However, existing benchmarks primarily evaluate these systems as agents for web retrieval and report generation, overlooking their potential to discover novel insights on the frontiers of scientific research. To address this gap, we introduce ResearcherBench, the first benchmark focused on evaluating the capabilities of these advanced, agentic systems - which we refer to as Deep AI Research Systems (DARS) - on frontier AI scientific questions. We compiled a dataset of 65 research questions expertly selected from real-world scientific scenarios such as laboratory discussions and interviews, spanning 35 different AI subjects and categorized into three types: technical details, literature review, and open consulting. Our dual evaluation framework combines rubric assessment, which uses expert-designed criteria to evaluate insight quality, with factual assessment, which measures citation accuracy (faithfulness) and coverage (groundedness). We evaluated several leading commercial DARS and baseline systems. Results show that OpenAI Deep Research and Gemini Deep Research significantly outperform other systems, with particular strength in open-ended consulting questions. Such capabilities represent a meaningful step toward AI self-improvement, aligning with the vision of ASI for AI. We open-source ResearcherBench to provide a standardized platform for promoting the development of next-generation AI research assistants, hoping to foster a new perspective in AI research evaluation for a novel pattern of scientific collaboration: https://github.com/GAIR-NLP/ResearcherBench.

  • 5 authors
·
Jul 22, 2025

LaajMeter: A Framework for LaaJ Evaluation

Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.

  • 5 authors
·
Aug 13, 2025

CORE-MM: Complex Open-Ended Reasoning Evaluation For Multi-Modal Large Language Models

Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence. These models not only excel in traditional vision-language tasks but also demonstrate impressive performance in contemporary multi-modal benchmarks. Although many of these benchmarks attempt to holistically evaluate MLLMs, they typically concentrate on basic reasoning tasks, often yielding only simple yes/no or multi-choice responses. These methods naturally lead to confusion and difficulties in conclusively determining the reasoning capabilities of MLLMs. To mitigate this issue, we manually curate a benchmark dataset specifically designed for MLLMs, with a focus on complex reasoning tasks. Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning. The queries in our dataset are intentionally constructed to engage the reasoning capabilities of MLLMs in the process of generating answers. For a fair comparison across various MLLMs, we incorporate intermediate reasoning steps into our evaluation criteria. In instances where an MLLM is unable to produce a definitive answer, its reasoning ability is evaluated by requesting intermediate reasoning steps. If these steps align with our manual annotations, appropriate scores are assigned. This evaluation scheme resembles methods commonly used in human assessments, such as exams or assignments, and represents what we consider a more effective assessment technique compared with existing benchmarks. We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark, designed to challenge and accurately measure their reasoning capabilities. The code and data will be released at https://core-mm.github.io/

  • 12 authors
·
Nov 20, 2023

ResearchQA: Evaluating Scholarly Question Answering at Scale Across 75 Fields with Survey-Mined Questions and Rubrics

Evaluating long-form responses to research queries heavily relies on expert annotators, restricting attention to areas like AI where researchers can conveniently enlist colleagues. Yet, research expertise is widespread: survey articles synthesize knowledge distributed across the literature. We introduce ResearchQA, a resource for evaluating LLM systems by distilling survey articles from 75 research fields into 21K queries and 160K rubric items. Each rubric, derived jointly with queries from survey sections, lists query-specific answer evaluation criteria, i.e., citing papers, making explanations, and describing limitations. Assessments by 31 Ph.D. annotators in 8 fields indicate 96% of queries support Ph.D. information needs and 87% of rubric items should be addressed in system responses by a sentence or more. Using our rubrics, we are able to construct an automatic pairwise judge obtaining 74% agreement with expert judgments. We leverage ResearchQA to analyze competency gaps in 18 systems in over 7.6K pairwise evaluations. No parametric or retrieval-augmented system we evaluate exceeds 70% on covering rubric items, and the highest-ranking agentic system shows 75% coverage. Error analysis reveals that the highest-ranking system fully addresses less than 11% of citation rubric items, 48% of limitation items, and 49% of comparison items. We release our data to facilitate more comprehensive multi-field evaluations.

  • 4 authors
·
Aug 30, 2025

What do we know about Hugging Face? A systematic literature review and quantitative validation of qualitative claims

Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative claims lacking quantitative analysis. Our research fills these gaps by providing a knowledge synthesis and quantitative analyses. Methods: We first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our findings are: (1) PTMs have a much higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: We confirm qualitative research claims with concrete metrics, supporting prior qualitative and case study research. Our measures show further dynamics of PTM reuse, inspiring research infrastructure and new measures.

  • 5 authors
·
Jun 12, 2024

IMProofBench: Benchmarking AI on Research-Level Mathematical Proof Generation

As the mathematical capabilities of large language models (LLMs) improve, it becomes increasingly important to evaluate their performance on research-level tasks at the frontier of mathematical knowledge. However, existing benchmarks are limited, as they focus solely on final-answer questions or high-school competition problems. To address this gap, we introduce IMProofBench, a private benchmark consisting of 39 peer-reviewed problems developed by expert mathematicians. Each problem requires a detailed proof and is paired with subproblems that have final answers, supporting both an evaluation of mathematical reasoning capabilities by human experts and a large-scale quantitative analysis through automated grading. Furthermore, unlike prior benchmarks, the evaluation setup simulates a realistic research environment: models operate in an agentic framework with tools like web search for literature review and mathematical software such as SageMath. Our results show that current LLMs can succeed at the more accessible research-level questions, but still encounter significant difficulties on more challenging problems. Quantitatively, Grok-4 achieves the highest accuracy of 52% on final-answer subproblems, while GPT-5 obtains the best performance for proof generation, achieving a fully correct solution for 22% of problems. IMProofBench will continue to evolve as a dynamic benchmark in collaboration with the mathematical community, ensuring its relevance for evaluating the next generation of LLMs.

  • 33 authors
·
Sep 30, 2025

Evaluating Language Models' Evaluations of Games

Reasoning is not just about solving problems -- it is also about evaluating which problems are worth solving at all. Evaluations of artificial intelligence (AI) systems primarily focused on problem solving, historically by studying how models play games such as chess and Go. In this paper, we advocate for a new paradigm that assesses AI systems' evaluation of games. First, we introduce a formalism for evaluating such evaluations. We then leverage a large-scale dataset of over 100 novel board games and over 450 human judgments to compare evaluations produced by modern language and reasoning models against those of people and symbolic computational agents. We consider two kinds of evaluative queries: assessing the payoff (or fairness) and the funness of games. These queries span two dimensions relevant to the design of evaluations of AI evaluations: how complex a query is to compute and how difficult a query is to quantify. Our results show that reasoning models are generally more aligned to people in their evaluations of games than non-reasoning language models. However, we observe a non-monotonic relationship: as models get closer to game-theoretic optimal, their fit to human data weakens. We also observe more "jaggedness" across models for assessing funness, in line with the greater difficulty of quantifying this query. Across queries and games, reasoning models show highly variable and unpredictable resource usage when assessing queries, pointing to the importance of imbuing more resource-rational meta-reasoning in language and reasoning models.

  • 12 authors
·
Oct 12, 2025 2

Contextualized Counterspeech: Strategies for Adaptation, Personalization, and Evaluation

AI-generated counterspeech offers a promising and scalable strategy to curb online toxicity through direct replies that promote civil discourse. However, current counterspeech is one-size-fits-all, lacking adaptation to the moderation context and the users involved. We propose and evaluate multiple strategies for generating tailored counterspeech that is adapted to the moderation context and personalized for the moderated user. We instruct an LLaMA2-13B model to generate counterspeech, experimenting with various configurations based on different contextual information and fine-tuning strategies. We identify the configurations that generate persuasive counterspeech through a combination of quantitative indicators and human evaluations collected via a pre-registered mixed-design crowdsourcing experiment. Results show that contextualized counterspeech can significantly outperform state-of-the-art generic counterspeech in adequacy and persuasiveness, without compromising other characteristics. Our findings also reveal a poor correlation between quantitative indicators and human evaluations, suggesting that these methods assess different aspects and highlighting the need for nuanced evaluation methodologies. The effectiveness of contextualized AI-generated counterspeech and the divergence between human and algorithmic evaluations underscore the importance of increased human-AI collaboration in content moderation.

  • 6 authors
·
Dec 10, 2024 2