new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection

Synthetic Aperture Radar (SAR) object detection has gained significant attention recently due to its irreplaceable all-weather imaging capabilities. However, this research field suffers from both limited public datasets (mostly comprising <2K images with only mono-category objects) and inaccessible source code. To tackle these challenges, we establish a new benchmark dataset and an open-source method for large-scale SAR object detection. Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets, providing a large-scale and diverse dataset for research purposes. To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created. With this high-quality dataset, we conducted comprehensive experiments and uncovered a crucial challenge in SAR object detection: the substantial disparities between the pretraining on RGB datasets and finetuning on SAR datasets in terms of both data domain and model structure. To bridge these gaps, we propose a novel Multi-Stage with Filter Augmentation (MSFA) pretraining framework that tackles the problems from the perspective of data input, domain transition, and model migration. The proposed MSFA method significantly enhances the performance of SAR object detection models while demonstrating exceptional generalizability and flexibility across diverse models. This work aims to pave the way for further advancements in SAR object detection. The dataset and code is available at https://github.com/zcablii/SARDet_100K.

  • 7 authors
·
Mar 11, 2024

Outward Migration of a Gas Accreting Planet: A Semi-Analytical Formula

Type II orbital migration is a key process to regulate the mass and semimajor axis distribution of exoplanetary giant planets. The conventional formula of type II migration generally predicts too rapid inward migration to reconcile with the observed pile-up of gas giant beyond 1 au. Analyzing the recent high-resolution hydrodynamical simulations by Li et al. (2024) and Pan et al. (2025) that show robust outward migration of a gas accreting planet, we here clarify the condition for the outward migration to occur and derive a general semi-analytical formula that can be applied for broad range of planet mass and disk conditions. The striking outward migration is caused by azimuthal asymmetry in corotation torque exerted from cicumplanetary disk regions (connecting to horseshoe flow) that is produced by the planetary gas accretion, while the conventional inward migration model is based on radial asymmetry in the torques from the circumstellar protoplanetry disk. We found that the azimuthal asymmetry dominates and the migration is outward, when the gap depth defined by the surface density reduction factor of 1/(1+K') is in the range of 0.03 lesssim K' lesssim 50. Using simple models with the new formula, we demonstrate that the outward migration plays an important role in shaping the mass and semimajor axis distribution of gas giants. The concurrent dependence of planets' accretion rate and migration direction on their masses and disk properties potentially reproduces the observed pile-up of exoplanetary gas giants beyond 1 au, although more detailed planet population synthesis calculations are needed in the future.

  • 5 authors
·
Nov 28

Knowledge Migration Framework for Smart Contract Vulnerability Detection

As a cornerstone of blockchain technology in the 3.0 era, smart contracts play a pivotal role in the evolution of blockchain systems. In order to address the limitations of existing smart contract vulnerability detection models with regard to their generalisation capability, an AF-STip smart contract vulnerability detection framework incorporating efficient knowledge migration is proposed. AF-STip employs the teacher network as the main model and migrates the knowledge processed by the smart contract to the student model using a data-free knowledge distillation method. The student model utilises this knowledge to enhance its vulnerability detection capabilities. The approach markedly enhances the model's capacity for feature extraction and cross-class adaptation, while concurrently reducing computational overhead.In order to further enhance the extraction of vulnerability features, an adaptive fusion module is proposed in this paper, which aims to strengthen the interaction and fusion of feature information.The experimental results demonstrate that the STip model attains an average F1 value detection score of 91.16% for the four vulnerabilities without disclosing the original smart contract data. To validate the viability of the proposed lightweight migration approach, the student model is deployed in a migration learning task targeting a novel vulnerability type, resulting in an accuracy of 91.02% and an F1 score of 90.46%. To the best of our knowledge, AF-STip is the inaugural model to apply data-free knowledge migration to smart contract vulnerability detection. While markedly reducing the computational overhead, the method still demonstrates exceptional performance in detecting novel vulnerabilities.

  • 2 authors
·
Dec 15, 2024

RustMap: Towards Project-Scale C-to-Rust Migration via Program Analysis and LLM

Migrating existing C programs into Rust is increasingly desired, as Rust offers superior memory safety while maintaining C's high performance. However, vastly different features between C and Rust--e.g., distinct definitions and usages of pointers and references--pose significant challenges beyond mere syntactic translation. Existing automated translation tools, such as C2Rust, may rely too much on syntactic, template-based translation and generate unsafe Rust code that is hard for human developers to read, maintain, or even compile. More semantic-aware translation that produces safer, idiomatic, and runnable Rust code is much needed. This paper introduces a novel dependency-guided and large language model (LLM)-based C-to-Rust translation approach, RustMap, based on three key ideas: (1) Utilize LLM capabilities to produce idiomatic Rust code from given small pieces of C code, (2) Mitigate LLM limitations in handling large codebases by breaking project-scale C programs into smaller units for translation according to their usage dependencies and composing them into a runnable Rust program, and (3) Enhance the correctness of the translated Rust program by using test cases to check input/output equivalence, isolate faulty code when execution states deviate, and iteratively refine the translation using feedback from compilation and test errors. We empirically evaluate RustMap on 126 real-world programs, including 125 from Rosetta Code and a 7000+ line bzip2 implementation using GPT-4o as the LLM. RustMap shows promising results, guiding GPT-4o to produce idiomatic, readable, and functional Rust code with significantly less unsafe code than other tools, and revealing non-trivial translation patterns reusable for future research.

  • 9 authors
·
Mar 22

Llumnix: Dynamic Scheduling for Large Language Model Serving

Inference serving for large language models (LLMs) is the key to unleashing their potential in people's daily lives. However, efficient LLM serving remains challenging today because the requests are inherently heterogeneous and unpredictable in terms of resource and latency requirements, as a result of the diverse applications and the dynamic execution nature of LLMs. Existing systems are fundamentally limited in handling these characteristics and cause problems such as severe queuing delays, poor tail latencies, and SLO violations. We introduce Llumnix, an LLM serving system that reacts to such heterogeneous and unpredictable requests by runtime rescheduling across multiple model instances. Similar to context switching across CPU cores in modern operating systems, Llumnix reschedules requests to improve load balancing and isolation, mitigate resource fragmentation, and differentiate request priorities and SLOs. Llumnix implements the rescheduling with an efficient and scalable live migration mechanism for requests and their in-memory states, and exploits it in a dynamic scheduling policy that unifies the multiple rescheduling scenarios elegantly. Our evaluations show that Llumnix improves tail latencies by an order of magnitude, accelerates high-priority requests by up to 1.5x, and delivers up to 36% cost savings while achieving similar tail latencies, compared against state-of-the-art LLM serving systems. Llumnix is publicly available at https://github.com/AlibabaPAI/llumnix.

  • 7 authors
·
Jun 5, 2024

PromptBridge: Cross-Model Prompt Transfer for Large Language Models

Large language models (LLMs) underpin applications in code generation, mathematical reasoning, and agent-based workflows. In practice, systems access LLMs via commercial APIs or open-source deployments, and the model landscape (e.g., GPT, Claude, Llama) evolves rapidly. This rapid evolution forces frequent model switches driven by capability, cost, deployment constraints, and privacy. Yet prompts are highly model-sensitive: reusing a prompt engineered for one model on another often yields substantially worse performance than a prompt optimized for the target model. We term this phenomenon Model Drifting. Through extensive empirical analysis across diverse LLM configurations, we show that model drifting is both common and severe. To address this challenge, we introduce PromptBridge, a training-free framework that preserves prompt effectiveness under model switches, enabling cross-model prompt transfer without costly per-task or per-model re-optimization. PromptBridge requires only a small set of alignment tasks for calibration. It first applies Model-Adaptive Reflective Prompt Evolution (MAP-RPE) to obtain task- and model-specific optimal prompts via iterative reflective refinement and quantitative evaluation. Using the resulting calibrated prompt pairs for the source and target models, PromptBridge learns a cross-model prompt mapping. At test time, i.e., for an unseen task, given a source-model prompt, this mapping directly produces an optimized prompt for the target model. Experiments in single-agent and multi-agent settings show that PromptBridge consistently improves downstream accuracy while reducing migration effort. The code will be available soon.

Diffusion-Link: Diffusion Probabilistic Model for Bridging the Audio-Text Modality Gap

Contrastive audio-language pretraining yields powerful joint representations, yet a persistent audio-text modality gap limits the benefits of coupling multimodal encoders with large language models (LLMs). We present Diffusion-Link, a diffusion-based modality-bridging module that generatively maps audio embeddings into the text-embedding distribution. The module is trained at the output embedding from the frozen multimodal encoder and implemented as a lightweight network with three residual MLP blocks. To assess the effect of Diffusion-Link on multimodal encoder-LLM coupling, we evaluate on Automatic Audio Captioning (AAC); to our knowledge, this is the first application of diffusion-based modality bridging to AAC. We report two results. (1) Modality-gap analysis: on similarity and geometric criteria, Diffusion-Link reduces the modality gap the most among prior diffusion-based methods and shows a collective migration of audio embeddings toward the text distribution. (2) Downstream AAC: attaching Diffusion-Link to the same multimodal LLM baseline achieves state-of-the-art on AudioCaps in both zero-shot and fully supervised captioning without external knowledge, with relative gains up to 52.5% and 7.5%, respectively. These findings show that closing the modality gap is pivotal for effective coupling between multimodal encoders and LLMs, and diffusion-based modality bridging offers a promising direction beyond knowledge-retrieval-centric designs. Code will be released upon acceptance https://github.com/DevKiHyun/Diffusion-Link

  • 5 authors
·
Oct 13 2

An Automatic SOAP Classification System Using Weakly Supervision And Transfer Learning

In this paper, we introduce a comprehensive framework for developing a machine learning-based SOAP (Subjective, Objective, Assessment, and Plan) classification system without manually SOAP annotated training data or with less manually SOAP annotated training data. The system is composed of the following two parts: 1) Data construction, 2) A neural network-based SOAP classifier, and 3) Transfer learning framework. In data construction, since a manual construction of a large size training dataset is expensive, we propose a rule-based weak labeling method utilizing the structured information of an EHR note. Then, we present a SOAP classifier composed of a pre-trained language model and bi-directional long-short term memory with conditional random field (Bi-LSTM-CRF). Finally, we propose a transfer learning framework that re-uses the trained parameters of the SOAP classifier trained with the weakly labeled dataset for datasets collected from another hospital. The proposed weakly label-based learning model successfully performed SOAP classification (89.99 F1-score) on the notes collected from the target hospital. Otherwise, in the notes collected from other hospitals and departments, the performance dramatically decreased. Meanwhile, we verified that the transfer learning framework is advantageous for inter-hospital adaptation of the model increasing the models' performance in every cases. In particular, the transfer learning approach was more efficient when the manually annotated data size was smaller. We showed that SOAP classification models trained with our weakly labeling algorithm can perform SOAP classification without manually annotated data on the EHR notes from the same hospital. The transfer learning framework helps SOAP classification model's inter-hospital migration with a minimal size of the manually annotated dataset.

  • 3 authors
·
Nov 26, 2022

Productively Deploying Emerging Models on Emerging Platforms: A Top-Down Approach for Testing and Debugging

While existing machine learning (ML) frameworks focus on established platforms, like running CUDA on server-grade GPUs, there have been growing demands to enable emerging AI applications in a broader set of scenarios, such as running Large Language Models (LLMs) within browsers and mobile phones. However, deploying emerging models on new platforms (such as Metal and WebGPU) presents significant software engineering challenges due to rapid model evolution and limited tooling and practices for these platforms. Previous practice for ML model deployment often follows a bottom-up fashion, where engineers first implement individual required operators and then put them together. However, this traditional development approach fails to meet the productivity requirements when deploying emerging ML applications, with the testing and debugging part as a bottleneck. To this end, we introduce TapML, a top-down approach designed to streamline model deployment on diverse platforms. While the traditional bottom-up approach requires crafting manual tests, TapML automatically creates high-quality, realistic test data through operator-wise test carving. Furthermore, TapML uses a migration-based strategy to gradually offload model implementation from the mature source platform to the target platform, minimizing the debugging scope of compound errors. TapML has been used as the default development method in the MLC-LLM project to deploy emerging ML models. Within 2 years, TapML has accelerated the deployment of 105 emerging models in 27 model architectures across 5 emerging platforms. We show that TapML effectively boosts developer productivity while ensuring the quality of deployed models. Furthermore, we summarize comprehensive case studies from our real-world development, offering best practices for developing emerging ML systems.

  • 7 authors
·
Apr 14, 2024

ToDRE: Visual Token Pruning via Diversity and Task Awareness for Efficient Large Vision-Language Models

The representation of visual inputs of large vision-language models (LVLMs) usually involves substantially more tokens than that of textual inputs, leading to significant computational overhead. Several recent studies strive to mitigate this issue by either conducting token compression to prune redundant visual tokens or guiding them to bypass certain computational stages. While most existing work exploits token importance as the redundancy indicator, our study reveals that two largely neglected factors, namely, the diversity of retained visual tokens and their task relevance, often offer more robust criteria in token pruning. To this end, we design ToDRE, a two-stage and training-free token compression framework that achieves superior performance by pruning Tokens based on token Diversity and token-task RElevance. Instead of pruning redundant tokens, ToDRE introduces a greedy k-center algorithm to select and retain a small subset of diverse visual tokens after the vision encoder. Additionally, ToDRE addresses the "information migration" by further eliminating task-irrelevant visual tokens within the decoder of large language model (LLM). Extensive experiments show that ToDRE effectively reduces 90% of visual tokens after vision encoder and adaptively prunes all visual tokens within certain LLM's decoder layers, leading to a 2.6x speed-up in total inference time while maintaining 95.1% of model performance and excellent compatibility with efficient attention operators.

  • 3 authors
·
May 24

Tutel: Adaptive Mixture-of-Experts at Scale

Sparsely-gated mixture-of-experts (MoE) has been widely adopted to scale deep learning models to trillion-plus parameters with fixed computational cost. The algorithmic performance of MoE relies on its token routing mechanism that forwards each input token to the right sub-models or experts. While token routing dynamically determines the amount of expert workload at runtime, existing systems suffer inefficient computation due to their static execution, namely static parallelism and pipelining, which does not adapt to the dynamic workload. We present Flex, a highly scalable stack design and implementation for MoE with dynamically adaptive parallelism and pipelining. Flex designs an identical layout for distributing MoE model parameters and input data, which can be leveraged by all possible parallelism or pipelining methods without any mathematical inequivalence or tensor migration overhead. This enables adaptive parallelism/pipelining optimization at zero cost during runtime. Based on this key design, Flex also implements various MoE acceleration techniques. Aggregating all techniques, Flex finally delivers huge speedup at any scale -- 4.96x and 5.75x speedup of a single MoE layer over 16 and 2,048 A100 GPUs, respectively, over the previous state-of-the-art. Our evaluation shows that Flex efficiently and effectively runs a real-world MoE-based model named SwinV2-MoE, built upon Swin Transformer V2, a state-of-the-art computer vision architecture. On efficiency, Flex accelerates SwinV2-MoE, achieving up to 1.55x and 2.11x speedup in training and inference over Fairseq, respectively. On effectiveness, the SwinV2-MoE model achieves superior accuracy in both pre-training and down-stream computer vision tasks such as COCO object detection than the counterpart dense model, indicating the readiness of Flex for end-to-end real-world model training and inference.

  • 15 authors
·
Jun 7, 2022

Intelligent Load Balancing in Cloud Computer Systems

Cloud computing is an established technology allowing users to share resources on a large scale, never before seen in IT history. A cloud system connects multiple individual servers in order to process related tasks in several environments at the same time. Clouds are typically more cost-effective than single computers of comparable computing performance. The sheer physical size of the system itself means that thousands of machines may be involved. The focus of this research was to design a strategy to dynamically allocate tasks without overloading Cloud nodes which would result in system stability being maintained at minimum cost. This research has added the following new contributions to the state of knowledge: (i) a novel taxonomy and categorisation of three classes of schedulers, namely OS-level, Cluster and Big Data, which highlight their unique evolution and underline their different objectives; (ii) an abstract model of cloud resources utilisation is specified, including multiple types of resources and consideration of task migration costs; (iii) a virtual machine live migration was experimented with in order to create a formula which estimates the network traffic generated by this process; (iv) a high-fidelity Cloud workload simulator, based on a month-long workload traces from Google's computing cells, was created; (v) two possible approaches to resource management were proposed and examined in the practical part of the manuscript: the centralised metaheuristic load balancer and the decentralised agent-based system. The project involved extensive experiments run on the University of Westminster HPC cluster, and the promising results are presented together with detailed discussions and a conclusion.

  • 1 authors
·
Sep 22