2 Pruning for Performance: Efficient Idiom and Metaphor Classification in Low-Resource Konkani Using mBERT In this paper, we address the persistent challenges that figurative language expressions pose for natural language processing (NLP) systems, particularly in low-resource languages such as Konkani. We present a hybrid model that integrates a pre-trained Multilingual BERT (mBERT) with a bidirectional LSTM and a linear classifier. This architecture is fine-tuned on a newly introduced annotated dataset for metaphor classification, developed as part of this work. To improve the model's efficiency, we implement a gradient-based attention head pruning strategy. For metaphor classification, the pruned model achieves an accuracy of 78%. We also applied our pruning approach to expand on an existing idiom classification task, achieving 83% accuracy. These results demonstrate the effectiveness of attention head pruning for building efficient NLP tools in underrepresented languages. 7 authors · May 23 1
1 Metaphors in Pre-Trained Language Models: Probing and Generalization Across Datasets and Languages Human languages are full of metaphorical expressions. Metaphors help people understand the world by connecting new concepts and domains to more familiar ones. Large pre-trained language models (PLMs) are therefore assumed to encode metaphorical knowledge useful for NLP systems. In this paper, we investigate this hypothesis for PLMs, by probing metaphoricity information in their encodings, and by measuring the cross-lingual and cross-dataset generalization of this information. We present studies in multiple metaphor detection datasets and in four languages (i.e., English, Spanish, Russian, and Farsi). Our extensive experiments suggest that contextual representations in PLMs do encode metaphorical knowledge, and mostly in their middle layers. The knowledge is transferable between languages and datasets, especially when the annotation is consistent across training and testing sets. Our findings give helpful insights for both cognitive and NLP scientists. 3 authors · Mar 26, 2022
- Leveraging a New Spanish Corpus for Multilingual and Crosslingual Metaphor Detection The lack of wide coverage datasets annotated with everyday metaphorical expressions for languages other than English is striking. This means that most research on supervised metaphor detection has been published only for that language. In order to address this issue, this work presents the first corpus annotated with naturally occurring metaphors in Spanish large enough to develop systems to perform metaphor detection. The presented dataset, CoMeta, includes texts from various domains, namely, news, political discourse, Wikipedia and reviews. In order to label CoMeta, we apply the MIPVU method, the guidelines most commonly used to systematically annotate metaphor on real data. We use our newly created dataset to provide competitive baselines by fine-tuning several multilingual and monolingual state-of-the-art large language models. Furthermore, by leveraging the existing VUAM English data in addition to CoMeta, we present the, to the best of our knowledge, first cross-lingual experiments on supervised metaphor detection. Finally, we perform a detailed error analysis that explores the seemingly high transfer of everyday metaphor across these two languages and datasets. 2 authors · Oct 19, 2022
- Enhancing Metaphor Detection through Soft Labels and Target Word Prediction Metaphors play a significant role in our everyday communication, yet detecting them presents a challenge. Traditional methods often struggle with improper application of language rules and a tendency to overlook data sparsity. To address these issues, we integrate knowledge distillation and prompt learning into metaphor detection. Our approach revolves around a tailored prompt learning framework specifically designed for metaphor detection. By strategically masking target words and providing relevant prompt data, we guide the model to accurately predict the contextual meanings of these words. This approach not only mitigates confusion stemming from the literal meanings of the words but also ensures effective application of language rules for metaphor detection. Furthermore, we've introduced a teacher model to generate valuable soft labels. These soft labels provide a similar effect to label smoothing and help prevent the model from becoming over confident and effectively addresses the challenge of data sparsity. Experimental results demonstrate that our model has achieved state-of-the-art performance, as evidenced by its remarkable results across various datasets. 2 authors · Mar 27, 2024
- Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation Metaphors, although occasionally unperceived, are ubiquitous in our everyday language. Thus, it is crucial for Language Models to be able to grasp the underlying meaning of this kind of figurative language. In this work, we present Meta4XNLI, a novel parallel dataset for the tasks of metaphor detection and interpretation that contains metaphor annotations in both Spanish and English. We investigate language models' metaphor identification and understanding abilities through a series of monolingual and cross-lingual experiments by leveraging our proposed corpus. In order to comprehend how these non-literal expressions affect models' performance, we look over the results and perform an error analysis. Additionally, parallel data offers many potential opportunities to investigate metaphor transferability between these languages and the impact of translation on the development of multilingual annotated resources. 2 authors · Apr 10, 2024 1
- EPIE Dataset: A Corpus For Possible Idiomatic Expressions Idiomatic expressions have always been a bottleneck for language comprehension and natural language understanding, specifically for tasks like Machine Translation(MT). MT systems predominantly produce literal translations of idiomatic expressions as they do not exhibit generic and linguistically deterministic patterns which can be exploited for comprehension of the non-compositional meaning of the expressions. These expressions occur in parallel corpora used for training, but due to the comparatively high occurrences of the constituent words of idiomatic expressions in literal context, the idiomatic meaning gets overpowered by the compositional meaning of the expression. State of the art Metaphor Detection Systems are able to detect non-compositional usage at word level but miss out on idiosyncratic phrasal idiomatic expressions. This creates a dire need for a dataset with a wider coverage and higher occurrence of commonly occurring idiomatic expressions, the spans of which can be used for Metaphor Detection. With this in mind, we present our English Possible Idiomatic Expressions(EPIE) corpus containing 25206 sentences labelled with lexical instances of 717 idiomatic expressions. These spans also cover literal usages for the given set of idiomatic expressions. We also present the utility of our dataset by using it to train a sequence labelling module and testing on three independent datasets with high accuracy, precision and recall scores. 2 authors · Jun 16, 2020
- ANALOGICAL -- A Novel Benchmark for Long Text Analogy Evaluation in Large Language Models Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity -- (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space. Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy. 9 authors · May 8, 2023
- Psychologically-informed chain-of-thought prompts for metaphor understanding in large language models Probabilistic models of language understanding are valuable tools for investigating human language use. However, they need to be hand-designed for a particular domain. In contrast, large language models (LLMs) are trained on text that spans a wide array of domains, but they lack the structure and interpretability of probabilistic models. In this paper, we use chain-of-thought prompts to introduce structures from probabilistic models into LLMs. We explore this approach in the case of metaphor understanding. Our chain-of-thought prompts lead language models to infer latent variables and reason about their relationships in order to choose appropriate paraphrases for metaphors. The latent variables and relationships chosen are informed by theories of metaphor understanding from cognitive psychology. We apply these prompts to the two largest versions of GPT-3 and show that they can improve performance in a paraphrase selection task. 4 authors · Sep 16, 2022
1 It's not Rocket Science : Interpreting Figurative Language in Narratives Figurative language is ubiquitous in English. Yet, the vast majority of NLP research focuses on literal language. Existing text representations by design rely on compositionality, while figurative language is often non-compositional. In this paper, we study the interpretation of two non-compositional figurative languages (idioms and similes). We collected datasets of fictional narratives containing a figurative expression along with crowd-sourced plausible and implausible continuations relying on the correct interpretation of the expression. We then trained models to choose or generate the plausible continuation. Our experiments show that models based solely on pre-trained language models perform substantially worse than humans on these tasks. We additionally propose knowledge-enhanced models, adopting human strategies for interpreting figurative language types : inferring meaning from the context and relying on the constituent words' literal meanings. The knowledge-enhanced models improve the performance on both the discriminative and generative tasks, further bridging the gap from human performance. 3 authors · Aug 31, 2021
- The Mind's Eye: A Multi-Faceted Reward Framework for Guiding Visual Metaphor Generation Visual metaphor generation is a challenging task that aims to generate an image given an input text metaphor. Inherently, it needs language understanding to bind a source concept with a target concept, in a way that preserves meaning while ensuring visual coherence. We propose a self-evaluating visual metaphor generation framework that focuses on metaphor alignment. Our self-evaluation approach combines existing metrics with our newly proposed metaphor decomposition score and a meaning alignment (MA) metric. Within this setup, we explore two novel approaches: a training-free pipeline that explicitly decomposes prompts into source-target-meaning (S-T-M) mapping for image synthesis, and a complementary training-based pipeline that improves alignment using our proposed self-evaluation reward schema, without any large-scale retraining. On the held-out test set, the training-free approach surpasses strong closed baselines (GPT-4o, Imagen) on decomposition, CLIP, and MA scores, with the training-based approach close behind. We evaluate our framework output using a user-facing study, and observed that participants preferred GPT-4o overall, while our training-free pipeline led open-source methods and edged Imagen on abstract metaphors. Our analyses show S-T-M prompting helps longer or more abstract metaphors, with closed models excelling on short, concrete cases; we also observe sensitivity to sampler settings. Overall, structured prompting and lightweight RL perform metaphor alignment well under modest compute, and remaining gaps to human preference appear driven by aesthetics and sampling. 5 authors · Aug 25
- On the Relationship between Sentence Analogy Identification and Sentence Structure Encoding in Large Language Models The ability of Large Language Models (LLMs) to encode syntactic and semantic structures of language is well examined in NLP. Additionally, analogy identification, in the form of word analogies are extensively studied in the last decade of language modeling literature. In this work we specifically look at how LLMs' abilities to capture sentence analogies (sentences that convey analogous meaning to each other) vary with LLMs' abilities to encode syntactic and semantic structures of sentences. Through our analysis, we find that LLMs' ability to identify sentence analogies is positively correlated with their ability to encode syntactic and semantic structures of sentences. Specifically, we find that the LLMs which capture syntactic structures better, also have higher abilities in identifying sentence analogies. 7 authors · Oct 11, 2023
- IRFL: Image Recognition of Figurative Language Figures of speech such as metaphors, similes, and idioms allow language to be expressive, invoke emotion, and communicate abstract ideas that might otherwise be difficult to visualize. These figurative forms are often conveyed through multiple modes, such as text and images, and frequently appear in advertising, news, social media, etc. Understanding multimodal figurative language is an essential component of human communication, and it plays a significant role in our daily interactions. While humans can intuitively understand multimodal figurative language, this poses a challenging task for machines that requires the cognitive ability to map between domains, abstraction, commonsense, and profound language and cultural knowledge. In this work, we propose the Image Recognition of Figurative Language dataset to examine vision and language models' understanding of figurative language. We leverage human annotation and an automatic pipeline we created to generate a multimodal dataset and introduce two novel tasks as a benchmark for multimodal figurative understanding. We experiment with several baseline models and find that all perform substantially worse than humans. We hope our dataset and benchmark will drive the development of models that will better understand figurative language. 3 authors · Mar 27, 2023
- A Dataset for Metaphor Detection in Early Medieval Hebrew Poetry There is a large volume of late antique and medieval Hebrew texts. They represent a crucial linguistic and cultural bridge between Biblical and modern Hebrew. Poetry is prominent in these texts and one of its main haracteristics is the frequent use of metaphor. Distinguishing figurative and literal language use is a major task for scholars of the Humanities, especially in the fields of literature, linguistics, and hermeneutics. This paper presents a new, challenging dataset of late antique and medieval Hebrew poetry with expert annotations of metaphor, as well as some baseline results, which we hope will facilitate further research in this area. 5 authors · Feb 27, 2024
- V-FLUTE: Visual Figurative Language Understanding with Textual Explanations Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena. 4 authors · May 2, 2024
- Hummus: A Dataset of Humorous Multimodal Metaphor Use Metaphor and humor share a lot of common ground, and metaphor is one of the most common humorous mechanisms. This study focuses on the humorous capacity of multimodal metaphors, which has not received due attention in the community. We take inspiration from the Incongruity Theory of humor, the Conceptual Metaphor Theory, and the annotation scheme behind the VU Amsterdam Metaphor Corpus, and developed a novel annotation scheme for humorous multimodal metaphor use in image-caption pairs. We create the Hummus Dataset of Humorous Multimodal Metaphor Use, providing expert annotation on 1k image-caption pairs sampled from the New Yorker Caption Contest corpus. Using the dataset, we test state-of-the-art multimodal large language models (MLLMs) on their ability to detect and understand humorous multimodal metaphor use. Our experiments show that current MLLMs still struggle with processing humorous multimodal metaphors, particularly with regard to integrating visual and textual information. We release our dataset and code at github.com/xiaoyuisrain/humorous-multimodal-metaphor-use. 4 authors · Apr 3
7 Paraphrase Types for Generation and Detection Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Detection. Our results suggest that while current techniques perform well in a binary classification scenario, i.e., paraphrased or not, the inclusion of fine-grained paraphrase types poses a significant challenge. While most approaches are good at generating and detecting general semantic similar content, they fail to understand the intrinsic linguistic variables they manipulate. Models trained in generating and identifying paraphrase types also show improvements in tasks without them. In addition, scaling these models further improves their ability to understand paraphrase types. We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future. 3 authors · Oct 23, 2023
- Pre-trained Models for Natural Language Processing: A Survey Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. 6 authors · Mar 18, 2020
- Just-DREAM-about-it: Figurative Language Understanding with DREAM-FLUTE Figurative language (e.g., "he flew like the wind") is challenging to understand, as it is hard to tell what implicit information is being conveyed from the surface form alone. We hypothesize that to perform this task well, the reader needs to mentally elaborate the scene being described to identify a sensible meaning of the language. We present DREAM-FLUTE, a figurative language understanding system that does this, first forming a "mental model" of situations described in a premise and hypothesis before making an entailment/contradiction decision and generating an explanation. DREAM-FLUTE uses an existing scene elaboration model, DREAM, for constructing its "mental model." In the FigLang2022 Shared Task evaluation, DREAM-FLUTE achieved (joint) first place (Acc@60=63.3%), and can perform even better with ensemble techniques, demonstrating the effectiveness of this approach. More generally, this work suggests that adding a reflective component to pretrained language models can improve their performance beyond standard fine-tuning (3.3% improvement in Acc@60). 6 authors · Oct 28, 2022
- BCAmirs at SemEval-2024 Task 4: Beyond Words: A Multimodal and Multilingual Exploration of Persuasion in Memes Memes, combining text and images, frequently use metaphors to convey persuasive messages, shaping public opinion. Motivated by this, our team engaged in SemEval-2024 Task 4, a hierarchical multi-label classification task designed to identify rhetorical and psychological persuasion techniques embedded within memes. To tackle this problem, we introduced a caption generation step to assess the modality gap and the impact of additional semantic information from images, which improved our result. Our best model utilizes GPT-4 generated captions alongside meme text to fine-tune RoBERTa as the text encoder and CLIP as the image encoder. It outperforms the baseline by a large margin in all 12 subtasks. In particular, it ranked in top-3 across all languages in Subtask 2a, and top-4 in Subtask 2b, demonstrating quantitatively strong performance. The improvement achieved by the introduced intermediate step is likely attributable to the metaphorical essence of images that challenges visual encoders. This highlights the potential for improving abstract visual semantics encoding. 4 authors · Apr 3, 2024
- Artificial Intuition: Efficient Classification of Scientific Abstracts It is desirable to coarsely classify short scientific texts, such as grant or publication abstracts, for strategic insight or research portfolio management. These texts efficiently transmit dense information to experts possessing a rich body of knowledge to aid interpretation. Yet this task is remarkably difficult to automate because of brevity and the absence of context. To address this gap, we have developed a novel approach to generate and appropriately assign coarse domain-specific labels. We show that a Large Language Model (LLM) can provide metadata essential to the task, in a process akin to the augmentation of supplemental knowledge representing human intuition, and propose a workflow. As a pilot study, we use a corpus of award abstracts from the National Aeronautics and Space Administration (NASA). We develop new assessment tools in concert with established performance metrics. 6 authors · Jul 8, 2024
- Comparative Study of Multilingual Idioms and Similes in Large Language Models This study addresses the gap in the literature concerning the comparative performance of LLMs in interpreting different types of figurative language across multiple languages. By evaluating LLMs using two multilingual datasets on simile and idiom interpretation, we explore the effectiveness of various prompt engineering strategies, including chain-of-thought, few-shot, and English translation prompts. We extend the language of these datasets to Persian as well by building two new evaluation sets. Our comprehensive assessment involves both closed-source (GPT-3.5, GPT-4o mini, Gemini 1.5), and open-source models (Llama 3.1, Qwen2), highlighting significant differences in performance across languages and figurative types. Our findings reveal that while prompt engineering methods are generally effective, their success varies by figurative type, language, and model. We also observe that open-source models struggle particularly with low-resource languages in similes. Additionally, idiom interpretation is nearing saturation for many languages, necessitating more challenging evaluations. 6 authors · Oct 21, 2024
- On Classification with Large Language Models in Cultural Analytics In this work, we survey the way in which classification is used as a sensemaking practice in cultural analytics, and assess where large language models can fit into this landscape. We identify ten tasks supported by publicly available datasets on which we empirically assess the performance of LLMs compared to traditional supervised methods, and explore the ways in which LLMs can be employed for sensemaking goals beyond mere accuracy. We find that prompt-based LLMs are competitive with traditional supervised models for established tasks, but perform less well on de novo tasks. In addition, LLMs can assist sensemaking by acting as an intermediary input to formal theory testing. 4 authors · Oct 15, 2024
- TACAM: Topic And Context Aware Argument Mining In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search engine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task. 3 authors · May 26, 2019
- ConFiguRe: Exploring Discourse-level Chinese Figures of Speech Figures of speech, such as metaphor and irony, are ubiquitous in literature works and colloquial conversations. This poses great challenge for natural language understanding since figures of speech usually deviate from their ostensible meanings to express deeper semantic implications. Previous research lays emphasis on the literary aspect of figures and seldom provide a comprehensive exploration from a view of computational linguistics. In this paper, we first propose the concept of figurative unit, which is the carrier of a figure. Then we select 12 types of figures commonly used in Chinese, and build a Chinese corpus for Contextualized Figure Recognition (ConFiguRe). Different from previous token-level or sentence-level counterparts, ConFiguRe aims at extracting a figurative unit from discourse-level context, and classifying the figurative unit into the right figure type. On ConFiguRe, three tasks, i.e., figure extraction, figure type classification and figure recognition, are designed and the state-of-the-art techniques are utilized to implement the benchmarks. We conduct thorough experiments and show that all three tasks are challenging for existing models, thus requiring further research. Our dataset and code are publicly available at https://github.com/pku-tangent/ConFiguRe. 6 authors · Sep 15, 2022
2 Scientific and Creative Analogies in Pretrained Language Models This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2. Existing analogy datasets typically focus on a limited set of analogical relations, with a high similarity of the two domains between which the analogy holds. As a more realistic setup, we introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains. Using this dataset, we test the analogical reasoning capabilities of several widely-used pretrained language models (LMs). We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding. 4 authors · Nov 28, 2022
- PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models The task of determining whether two texts are paraphrases has long been a challenge in NLP. However, the prevailing notion of paraphrase is often quite simplistic, offering only a limited view of the vast spectrum of paraphrase phenomena. Indeed, we find that evaluating models in a paraphrase dataset can leave uncertainty about their true semantic understanding. To alleviate this, we release paraphrasus, a benchmark designed for multi-dimensional assessment of paraphrase detection models and finer model selection. We find that paraphrase detection models under a fine-grained evaluation lens exhibit trade-offs that cannot be captured through a single classification dataset. 3 authors · Sep 18, 2024
- Memorization or Reasoning? Exploring the Idiom Understanding of LLMs Idioms have long posed a challenge due to their unique linguistic properties, which set them apart from other common expressions. While recent studies have leveraged large language models (LLMs) to handle idioms across various tasks, e.g., idiom-containing sentence generation and idiomatic machine translation, little is known about the underlying mechanisms of idiom processing in LLMs, particularly in multilingual settings. To this end, we introduce MIDAS, a new large-scale dataset of idioms in six languages, each paired with its corresponding meaning. Leveraging this resource, we conduct a comprehensive evaluation of LLMs' idiom processing ability, identifying key factors that influence their performance. Our findings suggest that LLMs rely not only on memorization, but also adopt a hybrid approach that integrates contextual cues and reasoning, especially when processing compositional idioms. This implies that idiom understanding in LLMs emerges from an interplay between internal knowledge retrieval and reasoning-based inference. 6 authors · May 22
- SpaDeLeF: A Dataset for Hierarchical Classification of Lexical Functions for Collocations in Spanish In natural language processing (NLP), lexical function is a concept to unambiguously represent semantic and syntactic features of words and phrases in text first crafted in the Meaning-Text Theory. Hierarchical classification of lexical functions involves organizing these features into a tree-like hierarchy of categories or labels. This is a challenging task as it requires a good understanding of the context and the relationships among words and phrases in text. It also needs large amounts of labeled data to train language models effectively. In this paper, we present a dataset of most frequent Spanish verb-noun collocations and sentences where they occur, each collocation is assigned to one of 37 lexical functions defined as classes for a hierarchical classification task. Each class represents a relation between the noun and the verb in a collocation involving their semantic and syntactic features. We combine the classes in a tree-based structure, and introduce classification objectives for each level of the structure. The dataset was created by dependency tree parsing and matching of the phrases in Spanish news. We provide baselines and data splits for each objective. 3 authors · Nov 7, 2023
- MemeCap: A Dataset for Captioning and Interpreting Memes Memes are a widely popular tool for web users to express their thoughts using visual metaphors. Understanding memes requires recognizing and interpreting visual metaphors with respect to the text inside or around the meme, often while employing background knowledge and reasoning abilities. We present the task of meme captioning and release a new dataset, MemeCap. Our dataset contains 6.3K memes along with the title of the post containing the meme, the meme captions, the literal image caption, and the visual metaphors. Despite the recent success of vision and language (VL) models on tasks such as image captioning and visual question answering, our extensive experiments using state-of-the-art VL models show that they still struggle with visual metaphors, and perform substantially worse than humans. 2 authors · May 23, 2023
- TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask. 2 authors · Jul 4, 2024
- I Spy a Metaphor: Large Language Models and Diffusion Models Co-Create Visual Metaphors Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALLcdotE 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models.Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task . To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task. 7 authors · May 24, 2023
- A Stylometric Application of Large Language Models We show that large language models (LLMs) can be used to distinguish the writings of different authors. Specifically, an individual GPT-2 model, trained from scratch on the works of one author, will predict held-out text from that author more accurately than held-out text from other authors. We suggest that, in this way, a model trained on one author's works embodies the unique writing style of that author. We first demonstrate our approach on books written by eight different (known) authors. We also use this approach to confirm R. P. Thompson's authorship of the well-studied 15th book of the Oz series, originally attributed to F. L. Baum. 5 authors · Oct 24
- Contrastive Loss is All You Need to Recover Analogies as Parallel Lines While static word embedding models are known to represent linguistic analogies as parallel lines in high-dimensional space, the underlying mechanism as to why they result in such geometric structures remains obscure. We find that an elementary contrastive-style method employed over distributional information performs competitively with popular word embedding models on analogy recovery tasks, while achieving dramatic speedups in training time. Further, we demonstrate that a contrastive loss is sufficient to create these parallel structures in word embeddings, and establish a precise relationship between the co-occurrence statistics and the geometric structure of the resulting word embeddings. 3 authors · Jun 13, 2023
- Multi-lingual and Multi-cultural Figurative Language Understanding Figurative language permeates human communication, but at the same time is relatively understudied in NLP. Datasets have been created in English to accelerate progress towards measuring and improving figurative language processing in language models (LMs). However, the use of figurative language is an expression of our cultural and societal experiences, making it difficult for these phrases to be universally applicable. In this work, we create a figurative language inference dataset, \datasetname, for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba. Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region. We assess multilingual LMs' abilities to interpret figurative language in zero-shot and few-shot settings. All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data, emphasizing the need for LMs to be exposed to a broader range of linguistic and cultural variation during training. 9 authors · May 25, 2023
3 A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models As Large Language Models (LLMs) continue to advance in their ability to write human-like text, a key challenge remains around their tendency to hallucinate generating content that appears factual but is ungrounded. This issue of hallucination is arguably the biggest hindrance to safely deploying these powerful LLMs into real-world production systems that impact people's lives. The journey toward widespread adoption of LLMs in practical settings heavily relies on addressing and mitigating hallucinations. Unlike traditional AI systems focused on limited tasks, LLMs have been exposed to vast amounts of online text data during training. While this allows them to display impressive language fluency, it also means they are capable of extrapolating information from the biases in training data, misinterpreting ambiguous prompts, or modifying the information to align superficially with the input. This becomes hugely alarming when we rely on language generation capabilities for sensitive applications, such as summarizing medical records, financial analysis reports, etc. This paper presents a comprehensive survey of over 32 techniques developed to mitigate hallucination in LLMs. Notable among these are Retrieval Augmented Generation (Lewis et al, 2021), Knowledge Retrieval (Varshney et al,2023), CoNLI (Lei et al, 2023), and CoVe (Dhuliawala et al, 2023). Furthermore, we introduce a detailed taxonomy categorizing these methods based on various parameters, such as dataset utilization, common tasks, feedback mechanisms, and retriever types. This classification helps distinguish the diverse approaches specifically designed to tackle hallucination issues in LLMs. Additionally, we analyze the challenges and limitations inherent in these techniques, providing a solid foundation for future research in addressing hallucinations and related phenomena within the realm of LLMs. 7 authors · Jan 2, 2024
- What does a platypus look like? Generating customized prompts for zero-shot image classification Open-vocabulary models are a promising new paradigm for image classification. Unlike traditional classification models, open-vocabulary models classify among any arbitrary set of categories specified with natural language during inference. This natural language, called "prompts", typically consists of a set of hand-written templates (e.g., "a photo of a {}") which are completed with each of the category names. This work introduces a simple method to generate higher accuracy prompts, without relying on any explicit knowledge of the task domain and with far fewer hand-constructed sentences. To achieve this, we combine open-vocabulary models with large language models (LLMs) to create Customized Prompts via Language models (CuPL, pronounced "couple"). In particular, we leverage the knowledge contained in LLMs in order to generate many descriptive sentences that contain important discriminating characteristics of the image categories. This allows the model to place a greater importance on these regions in the image when making predictions. We find that this straightforward and general approach improves accuracy on a range of zero-shot image classification benchmarks, including over one percentage point gain on ImageNet. Finally, this simple baseline requires no additional training and remains completely zero-shot. Code available at https://github.com/sarahpratt/CuPL. 4 authors · Sep 7, 2022
- Conceptual Engineering Using Large Language Models We describe a method, based on Jennifer Nado's proposal for classification procedures as targets of conceptual engineering, that implements such procedures by prompting a large language model. We apply this method, using data from the Wikidata knowledge graph, to evaluate stipulative definitions related to two paradigmatic conceptual engineering projects: the International Astronomical Union's redefinition of PLANET and Haslanger's ameliorative analysis of WOMAN. Our results show that classification procedures built using our approach can exhibit good classification performance and, through the generation of rationales for their classifications, can contribute to the identification of issues in either the definitions or the data against which they are being evaluated. We consider objections to this method, and discuss implications of this work for three aspects of theory and practice of conceptual engineering: the definition of its targets, empirical methods for their investigation, and their practical roles. The data and code used for our experiments, together with the experimental results, are available in a Github repository. 1 authors · Nov 30, 2023
- RELIC: Retrieving Evidence for Literary Claims Humanities scholars commonly provide evidence for claims that they make about a work of literature (e.g., a novel) in the form of quotations from the work. We collect a large-scale dataset (RELiC) of 78K literary quotations and surrounding critical analysis and use it to formulate the novel task of literary evidence retrieval, in which models are given an excerpt of literary analysis surrounding a masked quotation and asked to retrieve the quoted passage from the set of all passages in the work. Solving this retrieval task requires a deep understanding of complex literary and linguistic phenomena, which proves challenging to methods that overwhelmingly rely on lexical and semantic similarity matching. We implement a RoBERTa-based dense passage retriever for this task that outperforms existing pretrained information retrieval baselines; however, experiments and analysis by human domain experts indicate that there is substantial room for improvement over our dense retriever. 4 authors · Mar 18, 2022
1 Experimental Support for a Categorical Compositional Distributional Model of Meaning Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model. 2 authors · Jun 20, 2011
- Learning High-Quality and General-Purpose Phrase Representations Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract 3 authors · Jan 18, 2024
1 Beyond Understanding: Evaluating the Pragmatic Gap in LLMs' Cultural Processing of Figurative Language We present a comprehensive evaluation of the ability of large language models (LLMs) to process culturally grounded language, specifically to understand and pragmatically use figurative expressions that encode local knowledge and cultural nuance. Using figurative language as a proxy for cultural nuance and local knowledge, we design evaluation tasks for contextual understanding, pragmatic use, and connotation interpretation in Arabic and English. We evaluate 22 open- and closed-source LLMs on Egyptian Arabic idioms, multidialectal Arabic proverbs, and English proverbs. Our results show a consistent hierarchy: the average accuracy for Arabic proverbs is 4.29% lower than for English proverbs, and performance for Egyptian idioms is 10.28% lower than for Arabic proverbs. For the pragmatic use task, accuracy drops by 14.07% relative to understanding, though providing contextual idiomatic sentences improves accuracy by 10.66%. Models also struggle with connotative meaning, reaching at most 85.58% agreement with human annotators on idioms with 100% inter-annotator agreement. These findings demonstrate that figurative language serves as an effective diagnostic for cultural reasoning: while LLMs can often interpret figurative meaning, they face challenges in using it appropriately. To support future research, we release Kinayat, the first dataset of Egyptian Arabic idioms designed for both figurative understanding and pragmatic use evaluation. CMU-LTI · Oct 27 1
- An efficient framework for learning sentence representations In this work we propose a simple and efficient framework for learning sentence representations from unlabelled data. Drawing inspiration from the distributional hypothesis and recent work on learning sentence representations, we reformulate the problem of predicting the context in which a sentence appears as a classification problem. Given a sentence and its context, a classifier distinguishes context sentences from other contrastive sentences based on their vector representations. This allows us to efficiently learn different types of encoding functions, and we show that the model learns high-quality sentence representations. We demonstrate that our sentence representations outperform state-of-the-art unsupervised and supervised representation learning methods on several downstream NLP tasks that involve understanding sentence semantics while achieving an order of magnitude speedup in training time. 2 authors · Mar 7, 2018
1 Multilingual Multi-Figurative Language Detection Figures of speech help people express abstract concepts and evoke stronger emotions than literal expressions, thereby making texts more creative and engaging. Due to its pervasive and fundamental character, figurative language understanding has been addressed in Natural Language Processing, but it's highly understudied in a multilingual setting and when considering more than one figure of speech at the same time. To bridge this gap, we introduce multilingual multi-figurative language modelling, and provide a benchmark for sentence-level figurative language detection, covering three common figures of speech and seven languages. Specifically, we develop a framework for figurative language detection based on template-based prompt learning. In so doing, we unify multiple detection tasks that are interrelated across multiple figures of speech and languages, without requiring task- or language-specific modules. Experimental results show that our framework outperforms several strong baselines and may serve as a blueprint for the joint modelling of other interrelated tasks. 3 authors · May 31, 2023
- Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties. 4 authors · Nov 7, 2022
2 MIR: Methodology Inspiration Retrieval for Scientific Research Problems There has been a surge of interest in harnessing the reasoning capabilities of Large Language Models (LLMs) to accelerate scientific discovery. While existing approaches rely on grounding the discovery process within the relevant literature, effectiveness varies significantly with the quality and nature of the retrieved literature. We address the challenge of retrieving prior work whose concepts can inspire solutions for a given research problem, a task we define as Methodology Inspiration Retrieval (MIR). We construct a novel dataset tailored for training and evaluating retrievers on MIR, and establish baselines. To address MIR, we build the Methodology Adjacency Graph (MAG); capturing methodological lineage through citation relationships. We leverage MAG to embed an "intuitive prior" into dense retrievers for identifying patterns of methodological inspiration beyond superficial semantic similarity. This achieves significant gains of +5.4 in Recall@3 and +7.8 in Mean Average Precision (mAP) over strong baselines. Further, we adapt LLM-based re-ranking strategies to MIR, yielding additional improvements of +4.5 in Recall@3 and +4.8 in mAP. Through extensive ablation studies and qualitative analyses, we exhibit the promise of MIR in enhancing automated scientific discovery and outline avenues for advancing inspiration-driven retrieval. 6 authors · May 30
- Diversity Aware Relevance Learning for Argument Search In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data. 5 authors · Nov 4, 2020
- Testing the Ability of Language Models to Interpret Figurative Language Figurative and metaphorical language are commonplace in discourse, and figurative expressions play an important role in communication and cognition. However, figurative language has been a relatively under-studied area in NLP, and it remains an open question to what extent modern language models can interpret nonliteral phrases. To address this question, we introduce Fig-QA, a Winograd-style nonliteral language understanding task consisting of correctly interpreting paired figurative phrases with divergent meanings. We evaluate the performance of several state-of-the-art language models on this task, and find that although language models achieve performance significantly over chance, they still fall short of human performance, particularly in zero- or few-shot settings. This suggests that further work is needed to improve the nonliteral reasoning capabilities of language models. 4 authors · Apr 26, 2022
- Text Classification Algorithms: A Survey In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed. 6 authors · Apr 16, 2019
- Recite, Reconstruct, Recollect: Memorization in LMs as a Multifaceted Phenomenon Memorization in language models is typically treated as a homogenous phenomenon, neglecting the specifics of the memorized data. We instead model memorization as the effect of a set of complex factors that describe each sample and relate it to the model and corpus. To build intuition around these factors, we break memorization down into a taxonomy: recitation of highly duplicated sequences, reconstruction of inherently predictable sequences, and recollection of sequences that are neither. We demonstrate the usefulness of our taxonomy by using it to construct a predictive model for memorization. By analyzing dependencies and inspecting the weights of the predictive model, we find that different factors influence the likelihood of memorization differently depending on the taxonomic category. 12 authors · Jun 25, 2024
1 PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts We present PubMed 200k RCT, a new dataset based on PubMed for sequential sentence classification. The dataset consists of approximately 200,000 abstracts of randomized controlled trials, totaling 2.3 million sentences. Each sentence of each abstract is labeled with their role in the abstract using one of the following classes: background, objective, method, result, or conclusion. The purpose of releasing this dataset is twofold. First, the majority of datasets for sequential short-text classification (i.e., classification of short texts that appear in sequences) are small: we hope that releasing a new large dataset will help develop more accurate algorithms for this task. Second, from an application perspective, researchers need better tools to efficiently skim through the literature. Automatically classifying each sentence in an abstract would help researchers read abstracts more efficiently, especially in fields where abstracts may be long, such as the medical field. 2 authors · Oct 16, 2017
- Visualizing the Obvious: A Concreteness-based Ensemble Model for Noun Property Prediction Neural language models encode rich knowledge about entities and their relationships which can be extracted from their representations using probing. Common properties of nouns (e.g., red strawberries, small ant) are, however, more challenging to extract compared to other types of knowledge because they are rarely explicitly stated in texts. We hypothesize this to mainly be the case for perceptual properties which are obvious to the participants in the communication. We propose to extract these properties from images and use them in an ensemble model, in order to complement the information that is extracted from language models. We consider perceptual properties to be more concrete than abstract properties (e.g., interesting, flawless). We propose to use the adjectives' concreteness score as a lever to calibrate the contribution of each source (text vs. images). We evaluate our ensemble model in a ranking task where the actual properties of a noun need to be ranked higher than other non-relevant properties. Our results show that the proposed combination of text and images greatly improves noun property prediction compared to powerful text-based language models. 5 authors · Oct 23, 2022
1 Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled text, utilizing conjunctive clauses to represent the particular facets of each category. Indeed, even the absence of terms (negated features) can be used for categorization purposes. Our empirical comparison with Na\"ive Bayes, decision trees, linear support vector machines (SVMs), random forest, long short-term memory (LSTM) neural networks, and other techniques, is quite conclusive. The Tsetlin Machine either performs on par with or outperforms all of the evaluated methods on both the 20 Newsgroups and IMDb datasets, as well as on a non-public clinical dataset. On average, the Tsetlin Machine delivers the best recall and precision scores across the datasets. Finally, our GPU implementation of the Tsetlin Machine executes 5 to 15 times faster than the CPU implementation, depending on the dataset. We thus believe that our novel approach can have a significant impact on a wide range of text analysis applications, forming a promising starting point for deeper natural language understanding with the Tsetlin Machine. 6 authors · Sep 12, 2018
- A Survey of Active Learning for Text Classification using Deep Neural Networks Natural language processing (NLP) and neural networks (NNs) have both undergone significant changes in recent years. For active learning (AL) purposes, NNs are, however, less commonly used -- despite their current popularity. By using the superior text classification performance of NNs for AL, we can either increase a model's performance using the same amount of data or reduce the data and therefore the required annotation efforts while keeping the same performance. We review AL for text classification using deep neural networks (DNNs) and elaborate on two main causes which used to hinder the adoption: (a) the inability of NNs to provide reliable uncertainty estimates, on which the most commonly used query strategies rely, and (b) the challenge of training DNNs on small data. To investigate the former, we construct a taxonomy of query strategies, which distinguishes between data-based, model-based, and prediction-based instance selection, and investigate the prevalence of these classes in recent research. Moreover, we review recent NN-based advances in NLP like word embeddings or language models in the context of (D)NNs, survey the current state-of-the-art at the intersection of AL, text classification, and DNNs and relate recent advances in NLP to AL. Finally, we analyze recent work in AL for text classification, connect the respective query strategies to the taxonomy, and outline commonalities and shortcomings. As a result, we highlight gaps in current research and present open research questions. 2 authors · Aug 17, 2020
1 Every child should have parents: a taxonomy refinement algorithm based on hyperbolic term embeddings We introduce the use of Poincar\'e embeddings to improve existing state-of-the-art approaches to domain-specific taxonomy induction from text as a signal for both relocating wrong hyponym terms within a (pre-induced) taxonomy as well as for attaching disconnected terms in a taxonomy. This method substantially improves previous state-of-the-art results on the SemEval-2016 Task 13 on taxonomy extraction. We demonstrate the superiority of Poincar\'e embeddings over distributional semantic representations, supporting the hypothesis that they can better capture hierarchical lexical-semantic relationships than embeddings in the Euclidean space. 6 authors · Jun 5, 2019
- Multi-Figurative Language Generation Figurative language generation is the task of reformulating a given text in the desired figure of speech while still being faithful to the original context. We take the first step towards multi-figurative language modelling by providing a benchmark for the automatic generation of five common figurative forms in English. We train mFLAG employing a scheme for multi-figurative language pre-training on top of BART, and a mechanism for injecting the target figurative information into the encoder; this enables the generation of text with the target figurative form from another figurative form without parallel figurative-figurative sentence pairs. Our approach outperforms all strong baselines. We also offer some qualitative analysis and reflections on the relationship between the different figures of speech. 2 authors · Sep 5, 2022
1 Large Language Models as Annotators: Enhancing Generalization of NLP Models at Minimal Cost State-of-the-art supervised NLP models achieve high accuracy but are also susceptible to failures on inputs from low-data regimes, such as domains that are not represented in training data. As an approximation to collecting ground-truth labels for the specific domain, we study the use of large language models (LLMs) for annotating inputs and improving the generalization of NLP models. Specifically, given a budget for LLM annotations, we present an algorithm for sampling the most informative inputs to annotate and retrain the NLP model. We find that popular active learning strategies such as uncertainty-based sampling do not work well. Instead, we propose a sampling strategy based on the difference in prediction scores between the base model and the finetuned NLP model, utilizing the fact that most NLP models are finetuned from a base model. Experiments with classification (semantic similarity) and ranking (semantic search) tasks show that our sampling strategy leads to significant gains in accuracy for both the training and target domains. 2 authors · Jun 27, 2023
- Causal Micro-Narratives We present a novel approach to classify causal micro-narratives from text. These narratives are sentence-level explanations of the cause(s) and/or effect(s) of a target subject. The approach requires only a subject-specific ontology of causes and effects, and we demonstrate it with an application to inflation narratives. Using a human-annotated dataset spanning historical and contemporary US news articles for training, we evaluate several large language models (LLMs) on this multi-label classification task. The best-performing model--a fine-tuned Llama 3.1 8B--achieves F1 scores of 0.87 on narrative detection and 0.71 on narrative classification. Comprehensive error analysis reveals challenges arising from linguistic ambiguity and highlights how model errors often mirror human annotator disagreements. This research establishes a framework for extracting causal micro-narratives from real-world data, with wide-ranging applications to social science research. 5 authors · Oct 7, 2024
- A Decade of Knowledge Graphs in Natural Language Processing: A Survey In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work. 6 authors · Sep 30, 2022
3 Distributed Representations of Words and Phrases and their Compositionality The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 5 authors · Oct 16, 2013
- Revisiting MLLMs: An In-Depth Analysis of Image Classification Abilities With the rapid advancement of Multimodal Large Language Models (MLLMs), a variety of benchmarks have been introduced to evaluate their capabilities. While most evaluations have focused on complex tasks such as scientific comprehension and visual reasoning, little attention has been given to assessing their fundamental image classification abilities. In this paper, we address this gap by thoroughly revisiting the MLLMs with an in-depth analysis of image classification. Specifically, building on established datasets, we examine a broad spectrum of scenarios, from general classification tasks (e.g., ImageNet, ObjectNet) to more fine-grained categories such as bird and food classification. Our findings reveal that the most recent MLLMs can match or even outperform CLIP-style vision-language models on several datasets, challenging the previous assumption that MLLMs are bad at image classification VLMClassifier. To understand the factors driving this improvement, we conduct an in-depth analysis of the network architecture, data selection, and training recipe used in public MLLMs. Our results attribute this success to advancements in language models and the diversity of training data sources. Based on these observations, we further analyze and attribute the potential reasons to conceptual knowledge transfer and enhanced exposure of target concepts, respectively. We hope our findings will offer valuable insights for future research on MLLMs and their evaluation in image classification tasks. 7 authors · Dec 20, 2024
1 A RelEntLess Benchmark for Modelling Graded Relations between Named Entities Relations such as "is influenced by", "is known for" or "is a competitor of" are inherently graded: we can rank entity pairs based on how well they satisfy these relations, but it is hard to draw a line between those pairs that satisfy them and those that do not. Such graded relations play a central role in many applications, yet they are typically not covered by existing Knowledge Graphs. In this paper, we consider the possibility of using Large Language Models (LLMs) to fill this gap. To this end, we introduce a new benchmark, in which entity pairs have to be ranked according to how much they satisfy a given graded relation. The task is formulated as a few-shot ranking problem, where models only have access to a description of the relation and five prototypical instances. We use the proposed benchmark to evaluate state-of-the-art relation embedding strategies as well as several recent LLMs, covering both publicly available LLMs and closed models such as GPT-4. Overall, we find a strong correlation between model size and performance, with smaller Language Models struggling to outperform a naive baseline. The results of the largest Flan-T5 and OPT models are remarkably strong, although a clear gap with human performance remains. 3 authors · May 24, 2023
6 Retrieval-Enhanced Machine Learning: Synthesis and Opportunities In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research. 5 authors · Jul 17, 2024 2
1 Learning to Generate Novel Scientific Directions with Contextualized Literature-based Discovery Literature-Based Discovery (LBD) aims to discover new scientific knowledge by mining papers and generating hypotheses. Standard LBD is limited to predicting pairwise relations between discrete concepts (e.g., drug-disease links), and ignores critical contexts like experimental settings (e.g., a specific patient population where a drug is evaluated) and background motivations (e.g., to find drugs without specific side effects). We address these limitations with a novel formulation of contextualized-LBD (C-LBD): generating scientific hypotheses in natural language, while grounding them in a context that controls the hypothesis search space. We present a modeling framework using retrieval of ``inspirations'' from past scientific papers. Our evaluations reveal that GPT-4 tends to generate ideas with overall low technical depth and novelty, while our inspiration prompting approaches partially mitigate this issue. Our work represents a first step toward building language models that generate new ideas derived from scientific literature. 4 authors · May 23, 2023
- ChID: A Large-scale Chinese IDiom Dataset for Cloze Test Cloze-style reading comprehension in Chinese is still limited due to the lack of various corpora. In this paper we propose a large-scale Chinese cloze test dataset ChID, which studies the comprehension of idiom, a unique language phenomenon in Chinese. In this corpus, the idioms in a passage are replaced by blank symbols and the correct answer needs to be chosen from well-designed candidate idioms. We carefully study how the design of candidate idioms and the representation of idioms affect the performance of state-of-the-art models. Results show that the machine accuracy is substantially worse than that of human, indicating a large space for further research. 3 authors · Jun 4, 2019
- Counterfactual Visual Explanations In this work, we develop a technique to produce counterfactual visual explanations. Given a 'query' image I for which a vision system predicts class c, a counterfactual visual explanation identifies how I could change such that the system would output a different specified class c'. To do this, we select a 'distractor' image I' that the system predicts as class c' and identify spatial regions in I and I' such that replacing the identified region in I with the identified region in I' would push the system towards classifying I as c'. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples. 6 authors · Apr 16, 2019
- Melody-Lyrics Matching with Contrastive Alignment Loss The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm. 3 authors · Jul 31
- Harnessing Multiple Large Language Models: A Survey on LLM Ensemble LLM Ensemble -- which involves the comprehensive use of multiple large language models (LLMs), each aimed at handling user queries during downstream inference, to benefit from their individual strengths -- has gained substantial attention recently. The widespread availability of LLMs, coupled with their varying strengths and out-of-the-box usability, has profoundly advanced the field of LLM Ensemble. This paper presents the first systematic review of recent developments in LLM Ensemble. First, we introduce our taxonomy of LLM Ensemble and discuss several related research problems. Then, we provide a more in-depth classification of the methods under the broad categories of "ensemble-before-inference, ensemble-during-inference, ensemble-after-inference'', and review all relevant methods. Finally, we introduce related benchmarks and applications, summarize existing studies, and suggest several future research directions. A curated list of papers on LLM Ensemble is available at https://github.com/junchenzhi/Awesome-LLM-Ensemble. 10 authors · Feb 25
- Harnessing Artificial Intelligence to Combat Online Hate: Exploring the Challenges and Opportunities of Large Language Models in Hate Speech Detection Large language models (LLMs) excel in many diverse applications beyond language generation, e.g., translation, summarization, and sentiment analysis. One intriguing application is in text classification. This becomes pertinent in the realm of identifying hateful or toxic speech -- a domain fraught with challenges and ethical dilemmas. In our study, we have two objectives: firstly, to offer a literature review revolving around LLMs as classifiers, emphasizing their role in detecting and classifying hateful or toxic content. Subsequently, we explore the efficacy of several LLMs in classifying hate speech: identifying which LLMs excel in this task as well as their underlying attributes and training. Providing insight into the factors that contribute to an LLM proficiency (or lack thereof) in discerning hateful content. By combining a comprehensive literature review with an empirical analysis, our paper strives to shed light on the capabilities and constraints of LLMs in the crucial domain of hate speech detection. 3 authors · Mar 12, 2024
1 A Survey on Large Language Models for Recommendation Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration. We have also created a GitHub repository to index relevant papers on LLMs for recommendation, https://github.com/WLiK/LLM4Rec. 12 authors · May 31, 2023
4 Efficient Large Language Models: A Survey Large Language Models (LLMs) have demonstrated remarkable capabilities in important tasks such as natural language understanding, language generation, and complex reasoning and have the potential to make a substantial impact on our society. Such capabilities, however, come with the considerable resources they demand, highlighting the strong need to develop effective techniques for addressing their efficiency challenges. In this survey, we provide a systematic and comprehensive review of efficient LLMs research. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient LLMs topics from model-centric, data-centric, and framework-centric perspective, respectively. We have also created a GitHub repository where we compile the papers featured in this survey at https://github.com/AIoT-MLSys-Lab/EfficientLLMs, and will actively maintain this repository and incorporate new research as it emerges. We hope our survey can serve as a valuable resource to help researchers and practitioners gain a systematic understanding of the research developments in efficient LLMs and inspire them to contribute to this important and exciting field. 12 authors · Dec 6, 2023
- Rolling the DICE on Idiomaticity: How LLMs Fail to Grasp Context Human processing of idioms relies on understanding the contextual sentences in which idioms occur, as well as language-intrinsic features such as frequency and speaker-intrinsic factors like familiarity. While LLMs have shown high performance on idiomaticity detection tasks, this success may be attributed to reasoning shortcuts in existing datasets. To this end, we construct a novel, controlled contrastive dataset designed to test whether LLMs can effectively use context to disambiguate idiomatic meaning. Additionally, we explore how collocational frequency and sentence probability influence model performance. Our findings reveal that LLMs often fail to resolve idiomaticity when it is required to attend to the surrounding context, and that models perform better on sentences that have higher likelihood. The collocational frequency of expressions also impacts performance. We make our code and dataset publicly available. 3 authors · Oct 21, 2024
- Evaluating Class Membership Relations in Knowledge Graphs using Large Language Models A backbone of knowledge graphs are their class membership relations, which assign entities to a given class. As part of the knowledge engineering process, we propose a new method for evaluating the quality of these relations by processing descriptions of a given entity and class using a zero-shot chain-of-thought classifier that uses a natural language intensional definition of a class. We evaluate the method using two publicly available knowledge graphs, Wikidata and CaLiGraph, and 7 large language models. Using the gpt-4-0125-preview large language model, the method's classification performance achieves a macro-averaged F1-score of 0.830 on data from Wikidata and 0.893 on data from CaLiGraph. Moreover, a manual analysis of the classification errors shows that 40.9% of errors were due to the knowledge graphs, with 16.0% due to missing relations and 24.9% due to incorrectly asserted relations. These results show how large language models can assist knowledge engineers in the process of knowledge graph refinement. The code and data are available on Github. 2 authors · Apr 25, 2024
- Multi-source Semantic Graph-based Multimodal Sarcasm Explanation Generation Multimodal Sarcasm Explanation (MuSE) is a new yet challenging task, which aims to generate a natural language sentence for a multimodal social post (an image as well as its caption) to explain why it contains sarcasm. Although the existing pioneer study has achieved great success with the BART backbone, it overlooks the gap between the visual feature space and the decoder semantic space, the object-level metadata of the image, as well as the potential external knowledge. To solve these limitations, in this work, we propose a novel mulTi-source sEmantic grAph-based Multimodal sarcasm explanation scheme, named TEAM. In particular, TEAM extracts the object-level semantic meta-data instead of the traditional global visual features from the input image. Meanwhile, TEAM resorts to ConceptNet to obtain the external related knowledge concepts for the input text and the extracted object meta-data. Thereafter, TEAM introduces a multi-source semantic graph that comprehensively characterize the multi-source (i.e., caption, object meta-data, external knowledge) semantic relations to facilitate the sarcasm reasoning. Extensive experiments on a public released dataset MORE verify the superiority of our model over cutting-edge methods. 5 authors · Jun 28, 2023
- Give Me the Facts! A Survey on Factual Knowledge Probing in Pre-trained Language Models Pre-trained Language Models (PLMs) are trained on vast unlabeled data, rich in world knowledge. This fact has sparked the interest of the community in quantifying the amount of factual knowledge present in PLMs, as this explains their performance on downstream tasks, and potentially justifies their use as knowledge bases. In this work, we survey methods and datasets that are used to probe PLMs for factual knowledge. Our contributions are: (1) We propose a categorization scheme for factual probing methods that is based on how their inputs, outputs and the probed PLMs are adapted; (2) We provide an overview of the datasets used for factual probing; (3) We synthesize insights about knowledge retention and prompt optimization in PLMs, analyze obstacles to adopting PLMs as knowledge bases and outline directions for future work. 5 authors · Oct 25, 2023
- An Amharic News Text classification Dataset In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments. 2 authors · Mar 10, 2021
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
- Interpreting Embedding Spaces by Conceptualization One of the main methods for computational interpretation of a text is mapping it into a vector in some embedding space. Such vectors can then be used for a variety of textual processing tasks. Recently, most embedding spaces are a product of training large language models (LLMs). One major drawback of this type of representation is their incomprehensibility to humans. Understanding the embedding space is crucial for several important needs, including the need to debug the embedding method and compare it to alternatives, and the need to detect biases hidden in the model. In this paper, we present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space. We present an algorithm for deriving a conceptual space with dynamic on-demand granularity. We devise a new evaluation method, using either human rater or LLM-based raters, to show that the conceptualized vectors indeed represent the semantics of the original latent ones. We show the use of our method for various tasks, including comparing the semantics of alternative models and tracing the layers of the LLM. The code is available online https://github.com/adiSimhi/Interpreting-Embedding-Spaces-by-Conceptualization. 2 authors · Aug 22, 2022
- When SMILES have Language: Drug Classification using Text Classification Methods on Drug SMILES Strings Complex chemical structures, like drugs, are usually defined by SMILES strings as a sequence of molecules and bonds. These SMILES strings are used in different complex machine learning-based drug-related research and representation works. Escaping from complex representation, in this work, we pose a single question: What if we treat drug SMILES as conventional sentences and engage in text classification for drug classification? Our experiments affirm the possibility with very competitive scores. The study explores the notion of viewing each atom and bond as sentence components, employing basic NLP methods to categorize drug types, proving that complex problems can also be solved with simpler perspectives. The data and code are available here: https://github.com/azminewasi/Drug-Classification-NLP. 5 authors · Mar 3, 2024
- Dark & Stormy: Modeling Humor in the Worst Sentences Ever Written Textual humor is enormously diverse and computational studies need to account for this range, including intentionally bad humor. In this paper, we curate and analyze a novel corpus of sentences from the Bulwer-Lytton Fiction Contest to better understand "bad" humor in English. Standard humor detection models perform poorly on our corpus, and an analysis of literary devices finds that these sentences combine features common in existing humor datasets (e.g., puns, irony) with metaphor, metafiction and simile. LLMs prompted to synthesize contest-style sentences imitate the form but exaggerate the effect by over-using certain literary devices, and including far more novel adjective-noun bigrams than human writers. Data, code and analysis are available at https://github.com/venkatasg/bulwer-lytton 2 authors · Oct 28
- Enabling Large Language Models to Learn from Rules Large language models (LLMs) have shown incredible performance in completing various real-world tasks. The current knowledge learning paradigm of LLMs is mainly based on learning from examples, in which LLMs learn the internal rule implicitly from a certain number of supervised examples. However, this learning paradigm may not well learn those complicated rules, especially when the training examples are limited. We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules. That is, humans can learn new tasks or grasps new knowledge quickly and generalize well given only a detailed rule and a few optional examples. Therefore, in this paper, we aim to explore the feasibility of this new learning paradigm, which targets on encoding rule-based knowledge into LLMs. We further propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules, and then explicitly encode the knowledge into the parameters of LLMs by learning from the above in-context signals produced inside the model. Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability. Warning: This paper may contain examples with offensive content. 4 authors · Nov 15, 2023
- Meta-Tuning LLMs to Leverage Lexical Knowledge for Generalizable Language Style Understanding Language style is often used by writers to convey their intentions, identities, and mastery of language. In this paper, we show that current large language models struggle to capture some language styles without fine-tuning. To address this challenge, we investigate whether LLMs can be meta-trained based on representative lexicons to recognize new styles they have not been fine-tuned on. Experiments on 13 established style classification tasks, as well as 63 novel tasks generated using LLMs, demonstrate that meta-training with style lexicons consistently improves zero-shot transfer across styles. We release the code and data at http://github.com/octaviaguo/Style-LLM . 3 authors · May 23, 2023
- Efficient Scientific Full Text Classification: The Case of EICAT Impact Assessments This study explores strategies for efficiently classifying scientific full texts using both small, BERT-based models and local large language models like Llama-3.1 8B. We focus on developing methods for selecting subsets of input sentences to reduce input size while simultaneously enhancing classification performance. To this end, we compile a novel dataset consisting of full-text scientific papers from the field of invasion biology, specifically addressing the impacts of invasive species. These papers are aligned with publicly available impact assessments created by researchers for the International Union for Conservation of Nature (IUCN). Through extensive experimentation, we demonstrate that various sources like human evidence annotations, LLM-generated annotations or explainability scores can be used to train sentence selection models that improve the performance of both encoder- and decoder-based language models while optimizing efficiency through the reduction in input length, leading to improved results even if compared to models like ModernBERT that are able to handle the complete text as input. Additionally, we find that repeated sampling of shorter inputs proves to be a very effective strategy that, at a slightly increased cost, can further improve classification performance. 2 authors · Feb 10
3 The Geometry of Categorical and Hierarchical Concepts in Large Language Models Understanding how semantic meaning is encoded in the representation spaces of large language models is a fundamental problem in interpretability. In this paper, we study the two foundational questions in this area. First, how are categorical concepts, such as {'mammal', 'bird', 'reptile', 'fish'}, represented? Second, how are hierarchical relations between concepts encoded? For example, how is the fact that 'dog' is a kind of 'mammal' encoded? We show how to extend the linear representation hypothesis to answer these questions. We find a remarkably simple structure: simple categorical concepts are represented as simplices, hierarchically related concepts are orthogonal in a sense we make precise, and (in consequence) complex concepts are represented as polytopes constructed from direct sums of simplices, reflecting the hierarchical structure. We validate these theoretical results on the Gemma large language model, estimating representations for 957 hierarchically related concepts using data from WordNet. 4 authors · Jun 3, 2024
2 From Selection to Generation: A Survey of LLM-based Active Learning Active Learning (AL) has been a powerful paradigm for improving model efficiency and performance by selecting the most informative data points for labeling and training. In recent active learning frameworks, Large Language Models (LLMs) have been employed not only for selection but also for generating entirely new data instances and providing more cost-effective annotations. Motivated by the increasing importance of high-quality data and efficient model training in the era of LLMs, we present a comprehensive survey on LLM-based Active Learning. We introduce an intuitive taxonomy that categorizes these techniques and discuss the transformative roles LLMs can play in the active learning loop. We further examine the impact of AL on LLM learning paradigms and its applications across various domains. Finally, we identify open challenges and propose future research directions. This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques and deploy them to new applications. 34 authors · Feb 17
- Revisiting Hierarchical Text Classification: Inference and Metrics Hierarchical text classification (HTC) is the task of assigning labels to a text within a structured space organized as a hierarchy. Recent works treat HTC as a conventional multilabel classification problem, therefore evaluating it as such. We instead propose to evaluate models based on specifically designed hierarchical metrics and we demonstrate the intricacy of metric choice and prediction inference method. We introduce a new challenging dataset and we evaluate fairly, recent sophisticated models, comparing them with a range of simple but strong baselines, including a new theoretically motivated loss. Finally, we show that those baselines are very often competitive with the latest models. This highlights the importance of carefully considering the evaluation methodology when proposing new methods for HTC. Code implementation and dataset are available at https://github.com/RomanPlaud/revisitingHTC. 4 authors · Oct 2, 2024
2 FACT: Learning Governing Abstractions Behind Integer Sequences Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease. 4 authors · Sep 20, 2022
- Connecting the Dots: Evaluating Abstract Reasoning Capabilities of LLMs Using the New York Times Connections Word Game The New York Times Connections game has emerged as a popular and challenging pursuit for word puzzle enthusiasts. We collect 438 Connections games to evaluate the performance of state-of-the-art large language models (LLMs) against expert and novice human players. Our results show that even the best performing LLM, Claude 3.5 Sonnet, which has otherwise shown impressive reasoning abilities on a wide variety of benchmarks, can only fully solve 18% of the games. Novice and expert players perform better than Claude 3.5 Sonnet, with expert human players significantly outperforming it. We create a taxonomy of the knowledge types required to successfully cluster and categorize words in the Connections game. We find that while LLMs perform relatively well on categorizing words based on semantic relations they struggle with other types of knowledge such as Encyclopedic Knowledge, Multiword Expressions or knowledge that combines both Word Form and Meaning. Our results establish the New York Times Connections game as a challenging benchmark for evaluating abstract reasoning capabilities in AI systems. 6 authors · Jun 16, 2024
1 Logic Against Bias: Textual Entailment Mitigates Stereotypical Sentence Reasoning Due to their similarity-based learning objectives, pretrained sentence encoders often internalize stereotypical assumptions that reflect the social biases that exist within their training corpora. In this paper, we describe several kinds of stereotypes concerning different communities that are present in popular sentence representation models, including pretrained next sentence prediction and contrastive sentence representation models. We compare such models to textual entailment models that learn language logic for a variety of downstream language understanding tasks. By comparing strong pretrained models based on text similarity with textual entailment learning, we conclude that the explicit logic learning with textual entailment can significantly reduce bias and improve the recognition of social communities, without an explicit de-biasing process 2 authors · Mar 9, 2023
- Evaluation Metrics for Text Data Augmentation in NLP Recent surveys on data augmentation for natural language processing have reported different techniques and advancements in the field. Several frameworks, tools, and repositories promote the implementation of text data augmentation pipelines. However, a lack of evaluation criteria and standards for method comparison due to different tasks, metrics, datasets, architectures, and experimental settings makes comparisons meaningless. Also, a lack of methods unification exists and text data augmentation research would benefit from unified metrics to compare different augmentation methods. Thus, academics and the industry endeavor relevant evaluation metrics for text data augmentation techniques. The contribution of this work is to provide a taxonomy of evaluation metrics for text augmentation methods and serve as a direction for a unified benchmark. The proposed taxonomy organizes categories that include tools for implementation and metrics calculation. Finally, with this study, we intend to present opportunities to explore the unification and standardization of text data augmentation metrics. 2 authors · Feb 9, 2024
- Large Language Models Hallucination: A Comprehensive Survey Large language models (LLMs) have transformed natural language processing, achieving remarkable performance across diverse tasks. However, their impressive fluency often comes at the cost of producing false or fabricated information, a phenomenon known as hallucination. Hallucination refers to the generation of content by an LLM that is fluent and syntactically correct but factually inaccurate or unsupported by external evidence. Hallucinations undermine the reliability and trustworthiness of LLMs, especially in domains requiring factual accuracy. This survey provides a comprehensive review of research on hallucination in LLMs, with a focus on causes, detection, and mitigation. We first present a taxonomy of hallucination types and analyze their root causes across the entire LLM development lifecycle, from data collection and architecture design to inference. We further examine how hallucinations emerge in key natural language generation tasks. Building on this foundation, we introduce a structured taxonomy of detection approaches and another taxonomy of mitigation strategies. We also analyze the strengths and limitations of current detection and mitigation approaches and review existing evaluation benchmarks and metrics used to quantify LLMs hallucinations. Finally, we outline key open challenges and promising directions for future research, providing a foundation for the development of more truthful and trustworthy LLMs. 2 authors · Oct 5
- Multi-sense embeddings through a word sense disambiguation process Natural Language Understanding has seen an increasing number of publications in the last few years, especially after robust word embeddings models became prominent, when they proved themselves able to capture and represent semantic relationships from massive amounts of data. Nevertheless, traditional models often fall short in intrinsic issues of linguistics, such as polysemy and homonymy. Any expert system that makes use of natural language in its core, can be affected by a weak semantic representation of text, resulting in inaccurate outcomes based on poor decisions. To mitigate such issues, we propose a novel approach called Most Suitable Sense Annotation (MSSA), that disambiguates and annotates each word by its specific sense, considering the semantic effects of its context. Our approach brings three main contributions to the semantic representation scenario: (i) an unsupervised technique that disambiguates and annotates words by their senses, (ii) a multi-sense embeddings model that can be extended to any traditional word embeddings algorithm, and (iii) a recurrent methodology that allows our models to be re-used and their representations refined. We test our approach on six different benchmarks for the word similarity task, showing that our approach can produce state-of-the-art results and outperforms several more complex state-of-the-art systems. 3 authors · Jan 21, 2021
1 A Survey on Knowledge Graphs: Representation, Acquisition and Applications Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions. 5 authors · Feb 2, 2020
- Customizing Language Model Responses with Contrastive In-Context Learning Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting 2 authors · Jan 30, 2024
2 A Sea of Words: An In-Depth Analysis of Anchors for Text Data Anchors (Ribeiro et al., 2018) is a post-hoc, rule-based interpretability method. For text data, it proposes to explain a decision by highlighting a small set of words (an anchor) such that the model to explain has similar outputs when they are present in a document. In this paper, we present the first theoretical analysis of Anchors, considering that the search for the best anchor is exhaustive. After formalizing the algorithm for text classification, we present explicit results on different classes of models when the vectorization step is TF-IDF, and words are replaced by a fixed out-of-dictionary token when removed. Our inquiry covers models such as elementary if-then rules and linear classifiers. We then leverage this analysis to gain insights on the behavior of Anchors for any differentiable classifiers. For neural networks, we empirically show that the words corresponding to the highest partial derivatives of the model with respect to the input, reweighted by the inverse document frequencies, are selected by Anchors. 3 authors · May 27, 2022
- Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning. 3 authors · May 13, 2020
- Do Language Models Know When They're Hallucinating References? State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references. 4 authors · May 29, 2023
- MINERS: Multilingual Language Models as Semantic Retrievers Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning. 3 authors · Jun 11, 2024
- Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis We propose using automatically generated natural language definitions of contextualised word usages as interpretable word and word sense representations. Given a collection of usage examples for a target word, and the corresponding data-driven usage clusters (i.e., word senses), a definition is generated for each usage with a specialised Flan-T5 language model, and the most prototypical definition in a usage cluster is chosen as the sense label. We demonstrate how the resulting sense labels can make existing approaches to semantic change analysis more interpretable, and how they can allow users -- historical linguists, lexicographers, or social scientists -- to explore and intuitively explain diachronic trajectories of word meaning. Semantic change analysis is only one of many possible applications of the `definitions as representations' paradigm. Beyond being human-readable, contextualised definitions also outperform token or usage sentence embeddings in word-in-context semantic similarity judgements, making them a new promising type of lexical representation for NLP. 4 authors · May 19, 2023
- Love Me, Love Me, Say (and Write!) that You Love Me: Enriching the WASABI Song Corpus with Lyrics Annotations We present the WASABI Song Corpus, a large corpus of songs enriched with metadata extracted from music databases on the Web, and resulting from the processing of song lyrics and from audio analysis. More specifically, given that lyrics encode an important part of the semantics of a song, we focus here on the description of the methods we proposed to extract relevant information from the lyrics, such as their structure segmentation, their topics, the explicitness of the lyrics content, the salient passages of a song and the emotions conveyed. The creation of the resource is still ongoing: so far, the corpus contains 1.73M songs with lyrics (1.41M unique lyrics) annotated at different levels with the output of the above mentioned methods. Such corpus labels and the provided methods can be exploited by music search engines and music professionals (e.g. journalists, radio presenters) to better handle large collections of lyrics, allowing an intelligent browsing, categorization and segmentation recommendation of songs. 5 authors · Dec 5, 2019
- Generating Continuations in Multilingual Idiomatic Contexts The ability to process idiomatic or literal multiword expressions is a crucial aspect of understanding and generating any language. The task of generating contextually relevant continuations for narratives containing idiomatic (or literal) expressions can allow us to test the ability of generative language models (LMs) in understanding nuanced language containing non-compositional figurative text. We conduct a series of experiments using datasets in two distinct languages (English and Portuguese) under three different training settings (zero-shot, few-shot, and fine-tuned). Our results suggest that the models are only slightly better at generating continuations for literal contexts than idiomatic contexts, with exceedingly small margins. Furthermore, the models studied in this work perform equally well across both languages, indicating the robustness of generative models in performing this task. 2 authors · Oct 31, 2023
2 A Comprehensive Overview of Large Language Models Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks and beyond. This success of LLMs has led to a large influx of research contributions in this direction. These works encompass diverse topics such as architectural innovations, better training strategies, context length improvements, fine-tuning, multi-modal LLMs, robotics, datasets, benchmarking, efficiency, and more. With the rapid development of techniques and regular breakthroughs in LLM research, it has become considerably challenging to perceive the bigger picture of the advances in this direction. Considering the rapidly emerging plethora of literature on LLMs, it is imperative that the research community is able to benefit from a concise yet comprehensive overview of the recent developments in this field. This article provides an overview of the existing literature on a broad range of LLM-related concepts. Our self-contained comprehensive overview of LLMs discusses relevant background concepts along with covering the advanced topics at the frontier of research in LLMs. This review article is intended to not only provide a systematic survey but also a quick comprehensive reference for the researchers and practitioners to draw insights from extensive informative summaries of the existing works to advance the LLM research. 9 authors · Jul 12, 2023
1 Cognitive Mirage: A Review of Hallucinations in Large Language Models As large language models continue to develop in the field of AI, text generation systems are susceptible to a worrisome phenomenon known as hallucination. In this study, we summarize recent compelling insights into hallucinations in LLMs. We present a novel taxonomy of hallucinations from various text generation tasks, thus provide theoretical insights, detection methods and improvement approaches. Based on this, future research directions are proposed. Our contribution are threefold: (1) We provide a detailed and complete taxonomy for hallucinations appearing in text generation tasks; (2) We provide theoretical analyses of hallucinations in LLMs and provide existing detection and improvement methods; (3) We propose several research directions that can be developed in the future. As hallucinations garner significant attention from the community, we will maintain updates on relevant research progress. 5 authors · Sep 13, 2023
- How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at https://github.com/hyintell/awesome-refreshing-llms 5 authors · Oct 11, 2023
- MUDES: Multilingual Detection of Offensive Spans The interest in offensive content identification in social media has grown substantially in recent years. Previous work has dealt mostly with post level annotations. However, identifying offensive spans is useful in many ways. To help coping with this important challenge, we present MUDES, a multilingual system to detect offensive spans in texts. MUDES features pre-trained models, a Python API for developers, and a user-friendly web-based interface. A detailed description of MUDES' components is presented in this paper. 2 authors · Feb 18, 2021
2 Understanding Post-hoc Explainers: The Case of Anchors In many scenarios, the interpretability of machine learning models is a highly required but difficult task. To explain the individual predictions of such models, local model-agnostic approaches have been proposed. However, the process generating the explanations can be, for a user, as mysterious as the prediction to be explained. Furthermore, interpretability methods frequently lack theoretical guarantees, and their behavior on simple models is frequently unknown. While it is difficult, if not impossible, to ensure that an explainer behaves as expected on a cutting-edge model, we can at least ensure that everything works on simple, already interpretable models. In this paper, we present a theoretical analysis of Anchors (Ribeiro et al., 2018): a popular rule-based interpretability method that highlights a small set of words to explain a text classifier's decision. After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results when used with linear text classifiers on top of a TF-IDF vectorization. We believe that our analysis framework can aid in the development of new explainability methods based on solid theoretical foundations. 3 authors · Mar 15, 2023
- A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine. 7 authors · Jun 11, 2018
17 Large Concept Models: Language Modeling in a Sentence Representation Space LLMs have revolutionized the field of artificial intelligence and have emerged as the de-facto tool for many tasks. The current established technology of LLMs is to process input and generate output at the token level. This is in sharp contrast to humans who operate at multiple levels of abstraction, well beyond single words, to analyze information and to generate creative content. In this paper, we present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept. Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow. Hence, we build a "Large Concept Model". In this study, as proof of feasibility, we assume that a concept corresponds to a sentence, and use an existing sentence embedding space, SONAR, which supports up to 200 languages in both text and speech modalities. The Large Concept Model is trained to perform autoregressive sentence prediction in an embedding space. We explore multiple approaches, namely MSE regression, variants of diffusion-based generation, and models operating in a quantized SONAR space. These explorations are performed using 1.6B parameter models and training data in the order of 1.3T tokens. We then scale one architecture to a model size of 7B parameters and training data of about 2.7T tokens. We perform an experimental evaluation on several generative tasks, namely summarization and a new task of summary expansion. Finally, we show that our model exhibits impressive zero-shot generalization performance to many languages, outperforming existing LLMs of the same size. The training code of our models is freely available. 21 authors · Dec 11, 2024 1
- Evaluating Unsupervised Text Classification: Zero-shot and Similarity-based Approaches Text classification of unseen classes is a challenging Natural Language Processing task and is mainly attempted using two different types of approaches. Similarity-based approaches attempt to classify instances based on similarities between text document representations and class description representations. Zero-shot text classification approaches aim to generalize knowledge gained from a training task by assigning appropriate labels of unknown classes to text documents. Although existing studies have already investigated individual approaches to these categories, the experiments in literature do not provide a consistent comparison. This paper addresses this gap by conducting a systematic evaluation of different similarity-based and zero-shot approaches for text classification of unseen classes. Different state-of-the-art approaches are benchmarked on four text classification datasets, including a new dataset from the medical domain. Additionally, novel SimCSE and SBERT-based baselines are proposed, as other baselines used in existing work yield weak classification results and are easily outperformed. Finally, the novel similarity-based Lbl2TransformerVec approach is presented, which outperforms previous state-of-the-art approaches in unsupervised text classification. Our experiments show that similarity-based approaches significantly outperform zero-shot approaches in most cases. Additionally, using SimCSE or SBERT embeddings instead of simpler text representations increases similarity-based classification results even further. 3 authors · Nov 29, 2022
- Localizing Persona Representations in LLMs We present a study on how and where personas -- defined by distinct sets of human characteristics, values, and beliefs -- are encoded in the representation space of large language models (LLMs). Using a range of dimension reduction and pattern recognition methods, we first identify the model layers that show the greatest divergence in encoding these representations. We then analyze the activations within a selected layer to examine how specific personas are encoded relative to others, including their shared and distinct embedding spaces. We find that, across multiple pre-trained decoder-only LLMs, the analyzed personas show large differences in representation space only within the final third of the decoder layers. We observe overlapping activations for specific ethical perspectives -- such as moral nihilism and utilitarianism -- suggesting a degree of polysemy. In contrast, political ideologies like conservatism and liberalism appear to be represented in more distinct regions. These findings help to improve our understanding of how LLMs internally represent information and can inform future efforts in refining the modulation of specific human traits in LLM outputs. Warning: This paper includes potentially offensive sample statements. 5 authors · May 30
- HalluVerse25: Fine-grained Multilingual Benchmark Dataset for LLM Hallucinations Large Language Models (LLMs) are increasingly used in various contexts, yet remain prone to generating non-factual content, commonly referred to as "hallucinations". The literature categorizes hallucinations into several types, including entity-level, relation-level, and sentence-level hallucinations. However, existing hallucination datasets often fail to capture fine-grained hallucinations in multilingual settings. In this work, we introduce HalluVerse25, a multilingual LLM hallucination dataset that categorizes fine-grained hallucinations in English, Arabic, and Turkish. Our dataset construction pipeline uses an LLM to inject hallucinations into factual biographical sentences, followed by a rigorous human annotation process to ensure data quality. We evaluate several LLMs on HalluVerse25, providing valuable insights into how proprietary models perform in detecting LLM-generated hallucinations across different contexts. 3 authors · Mar 10
- A Survey on Hypothesis Generation for Scientific Discovery in the Era of Large Language Models Hypothesis generation is a fundamental step in scientific discovery, yet it is increasingly challenged by information overload and disciplinary fragmentation. Recent advances in Large Language Models (LLMs) have sparked growing interest in their potential to enhance and automate this process. This paper presents a comprehensive survey of hypothesis generation with LLMs by (i) reviewing existing methods, from simple prompting techniques to more complex frameworks, and proposing a taxonomy that categorizes these approaches; (ii) analyzing techniques for improving hypothesis quality, such as novelty boosting and structured reasoning; (iii) providing an overview of evaluation strategies; and (iv) discussing key challenges and future directions, including multimodal integration and human-AI collaboration. Our survey aims to serve as a reference for researchers exploring LLMs for hypothesis generation. 17 authors · Apr 7
1 Extracting Mathematical Concepts with Large Language Models We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it. 4 authors · Aug 29, 2023
- Memorization neq Understanding: Do Large Language Models Have the Ability of Scenario Cognition? Driven by vast and diverse textual data, large language models (LLMs) have demonstrated impressive performance across numerous natural language processing (NLP) tasks. Yet, a critical question persists: does their generalization arise from mere memorization of training data or from deep semantic understanding? To investigate this, we propose a bi-perspective evaluation framework to assess LLMs' scenario cognition - the ability to link semantic scenario elements with their arguments in context. Specifically, we introduce a novel scenario-based dataset comprising diverse textual descriptions of fictional facts, annotated with scenario elements. LLMs are evaluated through their capacity to answer scenario-related questions (model output perspective) and via probing their internal representations for encoded scenario elements-argument associations (internal representation perspective). Our experiments reveal that current LLMs predominantly rely on superficial memorization, failing to achieve robust semantic scenario cognition, even in simple cases. These findings expose critical limitations in LLMs' semantic understanding and offer cognitive insights for advancing their capabilities. 5 authors · Sep 5
1 Neural Networks for Joint Sentence Classification in Medical Paper Abstracts Existing models based on artificial neural networks (ANNs) for sentence classification often do not incorporate the context in which sentences appear, and classify sentences individually. However, traditional sentence classification approaches have been shown to greatly benefit from jointly classifying subsequent sentences, such as with conditional random fields. In this work, we present an ANN architecture that combines the effectiveness of typical ANN models to classify sentences in isolation, with the strength of structured prediction. Our model achieves state-of-the-art results on two different datasets for sequential sentence classification in medical abstracts. 3 authors · Dec 15, 2016
- Towards Efficient Large Language Models for Scientific Text: A Review Large language models (LLMs) have ushered in a new era for processing complex information in various fields, including science. The increasing amount of scientific literature allows these models to acquire and understand scientific knowledge effectively, thus improving their performance in a wide range of tasks. Due to the power of LLMs, they require extremely expensive computational resources, intense amounts of data, and training time. Therefore, in recent years, researchers have proposed various methodologies to make scientific LLMs more affordable. The most well-known approaches align in two directions. It can be either focusing on the size of the models or enhancing the quality of data. To date, a comprehensive review of these two families of methods has not yet been undertaken. In this paper, we (I) summarize the current advances in the emerging abilities of LLMs into more accessible AI solutions for science, and (II) investigate the challenges and opportunities of developing affordable solutions for scientific domains using LLMs. 3 authors · Aug 20, 2024
- Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features for downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, tape-arxiv23. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data. Our codes and datasets are available at: https://github.com/XiaoxinHe/TAPE. 6 authors · May 30, 2023
- Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power. 9 authors · Jun 26, 2024
- Auto-tagging of Short Conversational Sentences using Transformer Methods The problem of categorizing short speech sentences according to their semantic features with high accuracy is a subject studied in natural language processing. In this study, a data set created with samples classified in 46 different categories was used. Examples consist of sentences taken from chat conversations between a company's customer representatives and the company's website visitors. The primary purpose is to automatically tag questions and requests from visitors in the most accurate way for 46 predetermined categories for use in a chat application to generate meaningful answers to the questions asked by the website visitors. For this, different BERT models and one GPT-2 model, pre-trained in Turkish, were preferred. The classification performances of the relevant models were analyzed in detail and reported accordingly. 8 authors · Jun 3, 2021
- Annotation Artifacts in Natural Language Inference Data Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem. 6 authors · Mar 6, 2018
- Prompt Refinement or Fine-tuning? Best Practices for using LLMs in Computational Social Science Tasks Large Language Models are expressive tools that enable complex tasks of text understanding within Computational Social Science. Their versatility, while beneficial, poses a barrier for establishing standardized best practices within the field. To bring clarity on the values of different strategies, we present an overview of the performance of modern LLM-based classification methods on a benchmark of 23 social knowledge tasks. Our results point to three best practices: select models with larger vocabulary and pre-training corpora; avoid simple zero-shot in favor of AI-enhanced prompting; fine-tune on task-specific data, and consider more complex forms instruction-tuning on multiple datasets only when only training data is more abundant. 2 authors · Aug 2, 2024