new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Efficient Magic State Cultivation on $\mathbb{RP}^2$

Preparing high-fidelity logical magic states is crucial for fault-tolerant quantum computation. Among prior attempts to reduce the substantial cost of magic state preparation, magic state cultivation (MSC), a recently proposed protocol for preparing T states without magic state distillation, achieves state-of-the-art efficiency. Inspired by this work, we propose a new MSC procedure that would produce a logical T state on a rotated surface code at a further reduced cost. For our MSC protocol, we define a new code family, the RP^2 code, by putting the rotated surface code on RP^2 (a two-dimensional manifold), as well as two self-dual CSS codes named SRP-3 and SRP-5 respectively. Small RP^2 codes are used to hold logical information and checked by syndrome extraction (SE) circuits. We design fast morphing circuits that enable switching between a distance 3 (5) RP^2 code and an SRP-3 (SRP-5) code on which we can efficiently check the correctness of the logical state. To preserve the high accuracy of the cultivated logical T state, we design an efficient and easy-to-decode expansion stage that grows a small RP^2 code to a large rotated surface code in one round. Our MSC protocol utilizes non-local connectivity, available on both neutral atom array and ion trap platforms. According to our Monte Carlo sampling results, our MSC protocol requires about an order of magnitude smaller space-time volume to reach a target logical error rate around 10^{-9} compared to the original MSC protocol.

  • 4 authors
·
Mar 24, 2025

MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance

Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.

  • 6 authors
·
Mar 20, 2025 2