new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Communication and Verification in LLM Agents towards Collaboration under Information Asymmetry

While Large Language Model (LLM) agents are often approached from the angle of action planning/generation to accomplish a goal (e.g., given by language descriptions), their abilities to collaborate with each other to achieve a joint goal are not well explored. To address this limitation, this paper studies LLM agents in task collaboration, particularly under the condition of information asymmetry, where agents have disparities in their knowledge and skills and need to work together to complete a shared task. We extend Einstein Puzzles, a classical symbolic puzzle, to a table-top game. In this game, two LLM agents must reason, communicate, and act to satisfy spatial and relational constraints required to solve the puzzle. We apply a fine-tuning-plus-verifier framework in which LLM agents are equipped with various communication strategies and verification signals from the environment. Empirical results highlight the critical importance of aligned communication, especially when agents possess both information-seeking and -providing capabilities. Interestingly, agents without communication can still achieve high task performance; however, further analysis reveals a lack of true rule understanding and lower trust from human evaluators. Instead, by integrating an environment-based verifier, we enhance agents' ability to comprehend task rules and complete tasks, promoting both safer and more interpretable collaboration in AI systems. https://github.com/Roihn/EinsteinPuzzles

  • 8 authors
·
Oct 29, 2025

Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery

The development of modern Artificial Intelligence (AI) models, particularly diffusion-based models employed in computer vision and image generation tasks, is undergoing a paradigmatic shift in development methodologies. Traditionally dominated by a "Model Centric" approach, in which performance gains were primarily pursued through increasingly complex model architectures and hyperparameter optimization, the field is now recognizing a more nuanced "Data-Centric" approach. This emergent framework foregrounds the quality, structure, and relevance of training data as the principal driver of model performance. To operationalize this paradigm shift, we introduce the DataSeeds.AI sample dataset (the "DSD"), initially comprised of approximately 10,610 high-quality human peer-ranked photography images accompanied by extensive multi-tier annotations. The DSD is a foundational computer vision dataset designed to usher in a new standard for commercial image datasets. Representing a small fraction of DataSeed.AI's 100 million-plus image catalog, the DSD provides a scalable foundation necessary for robust commercial and multimodal AI development. Through this in-depth exploratory analysis, we document the quantitative improvements generated by the DSD on specific models against known benchmarks and make the code and the trained models used in our evaluation publicly available.

  • 4 authors
·
Jun 5, 2025 2

PLUM: Preference Learning Plus Test Cases Yields Better Code Language Models

Instruction-finetuned code language models (LMs) have shown promise in various programming tasks. They are trained, using a language modeling objective, on natural language instructions and gold code snippet pairs. Recent evidence suggests that these models, never exposed to incorrect solutions during training, often struggle to distinguish between correct and incorrect solutions. This observation raises our inquiry: Can preference learning, which trains models to prefer correct solutions over incorrect ones, help push the boundaries of code LMs even further? We propose PLUM, a novel preference learning framework augmented with test cases tailored for code LMs.PLUM aims to investigate the key success factors and potential benefits of preference learning in code LMs, which remain elusive despite its success in aligning LMs with human values. PLUM consists of three stages: (1) Generating test cases for natural language instructions, (2) sampling candidate solutions from the policy and evaluating them against the test cases to create a preference dataset, which is then used to (3) train the policy with a preference learning algorithm. Experiments demonstrate that PLUM substantially improves the performance of existing code LMs on established code generation benchmarks such as HumanEval (+) and MBPP (+), even for the state-of-the-art open-source language model CodeQwen-1.5-7B-Chat. PLUM complements the supervised fine-tuning (SFT) stage, demonstrating synergistic effects.

  • 4 authors
·
Jun 10, 2024

SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining

Large language models (LLMs) have shown impressive capabilities across various tasks. However, training LLMs from scratch requires significant computational power and extensive memory capacity. Recent studies have explored low-rank structures on weights for efficient fine-tuning in terms of parameters and memory, either through low-rank adaptation or factorization. While effective for fine-tuning, low-rank structures are generally less suitable for pretraining because they restrict parameters to a low-dimensional subspace. In this work, we propose to parameterize the weights as a sum of low-rank and sparse matrices for pretraining, which we call SLTrain. The low-rank component is learned via matrix factorization, while for the sparse component, we employ a simple strategy of uniformly selecting the sparsity support at random and learning only the non-zero entries with the fixed support. While being simple, the random fixed-support sparse learning strategy significantly enhances pretraining when combined with low-rank learning. Our results show that SLTrain adds minimal extra parameters and memory costs compared to pretraining with low-rank parameterization, yet achieves substantially better performance, which is comparable to full-rank training. Remarkably, when combined with quantization and per-layer updates, SLTrain can reduce memory requirements by up to 73% when pretraining the LLaMA 7B model.

  • 7 authors
·
Jun 4, 2024 2

LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning

We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on adapting RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and moreover enables more aggressive quantization. For example, on the OpenAssistant benchmark LQ-LoRA is able to learn a 2.5-bit LLaMA-2 model that is competitive with a model finetuned with 4-bit QLoRA. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) is competitive with the original model in full precision.

  • 4 authors
·
Nov 20, 2023

SinkLoRA: Enhanced Efficiency and Chat Capabilities for Long-Context Large Language Models

Extending the functionality of the Transformer model to accommodate longer sequence lengths has become a critical challenge. This extension is crucial not only for improving tasks such as language translation and long-context processing but also for enabling novel applications like chatbots, code generation, and multimedia content creation. The primary obstacle is the self-attention mechanism, which scales quadratically with sequence length in terms of computation time and memory requirements. LongLoRA proposed shifted sparse attention (S\(^2\)-Attn), effectively enabling context extension and leading to non-trivial computation savings with similar performance to fine-tuning with vanilla attention. However, LongLoRA is still not as efficient as vanilla attention, reaching only 39\% of the perplexity improvement compared to full attention. This inefficiency is due to the cyclic shift applied within different attention head patterns, causing either chaos in the attention head structure or unnecessary information exchange between token groups. To address these issues, We propose SinkLoRA, which features better work partitioning. Specifically, (1) we developed SF-Attn with a segmentation and reassembly algorithm to proportionally return cyclically shifted groups of attention heads to their un-shifted state together with global attention of "sink attention tokens", achieving 92\% of the perplexity improvement compared to full attention after fine tuning, and (2) applied a SOTA KV cache compression algorithm H_2O to accelerate inference. Furthermore, We conducted supervised fine-tuning with SinkLoRA using a self collected LongAlpaca-plus dataset. All our code, models, datasets, and demos are available at https://github.com/Dexter-GT-86/SinkLoRA.

  • 1 authors
·
Jun 9, 2024 2

DecepChain: Inducing Deceptive Reasoning in Large Language Models

Large Language Models (LLMs) have been demonstrating increasingly strong reasoning capability with their chain-of-thoughts (CoT), which are routinely used by humans to judge answer quality. This reliance creates a powerful yet fragile basis for trust. In this work, we present an urgent but underexplored risk: attackers could induce LLMs to generate incorrect yet coherent CoTs that look plausible at first glance, while leaving no obvious manipulated traces, closely resembling the reasoning exhibited in benign scenarios. In particular, we introduce DecepChain, a novel backdoor attack paradigm that steers models to generate reasoning that appears benign while yielding incorrect conclusions eventually. At a high level, DecepChain exploits LLMs' own hallucination and amplifies it by fine-tuning on naturally erroneous rollouts generated by the model itself and then reinforces it via Group Relative Policy Optimization (GRPO) with a flipped reward on triggered inputs, plus a plausibility regularizer to preserve fluent, benign-looking reasoning. Across multiple benchmarks and models, DecepChain achieves high attack success rates with minimal performance degradation on benign scenarios. Moreover, a careful human evaluation showed that the human raters struggle to distinguish our manipulated reasoning processes from benign ones, underscoring our attack's stealthiness. Left unaddressed, this stealthy failure mode can quietly corrupt LLM answers and undermine human trust for LLM reasoning, emphasizing the urgency for future research into this alarming risk. Project page: https://decepchain.github.io/.

  • 4 authors
·
Sep 30, 2025