Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVulnerability-Aware Alignment: Mitigating Uneven Forgetting in Harmful Fine-Tuning
Harmful fine-tuning (HFT), performed directly on open-source LLMs or through Fine-tuning-as-a-Service, breaks safety alignment and poses significant threats. Existing methods aim to mitigate HFT risks by learning robust representation on alignment data or making harmful data unlearnable, but they treat each data sample equally, leaving data vulnerability patterns understudied. In this work, we reveal that certain subsets of alignment data are consistently more prone to forgetting during HFT across different fine-tuning tasks. Inspired by these findings, we propose Vulnerability-Aware Alignment (VAA), which estimates data vulnerability, partitions data into "vulnerable" and "invulnerable" groups, and encourages balanced learning using a group distributionally robust optimization (Group DRO) framework. Specifically, VAA learns an adversarial sampler that samples examples from the currently underperforming group and then applies group-dependent adversarial perturbations to the data during training, aiming to encourage a balanced learning process across groups. Experiments across four fine-tuning tasks demonstrate that VAA significantly reduces harmful scores while preserving downstream task performance, outperforming state-of-the-art baselines.
When Style Breaks Safety: Defending Language Models Against Superficial Style Alignment
Large language models (LLMs) can be prompted with specific styles (e.g., formatting responses as lists), including in jailbreak queries. Although these style patterns are semantically unrelated to the malicious intents behind jailbreak queries, their safety impact remains unclear. In this work, we seek to understand whether style patterns compromise LLM safety, how superficial style alignment increases model vulnerability, and how best to mitigate these risks during alignment. We evaluate 32 LLMs across seven jailbreak benchmarks, and find that malicious queries with style patterns inflate the attack success rate (ASR) for nearly all models. Notably, ASR inflation correlates with both the length of style patterns and the relative attention an LLM exhibits on them. We then investigate superficial style alignment, and find that fine-tuning with specific styles makes LLMs more vulnerable to jailbreaks of those same styles. Finally, we propose SafeStyle, a defense strategy that incorporates a small amount of safety training data augmented to match the distribution of style patterns in the fine-tuning data. Across three LLMs and five fine-tuning style settings, SafeStyle consistently outperforms baselines in maintaining LLM safety.
AdversariaL attacK sAfety aLIgnment(ALKALI): Safeguarding LLMs through GRACE: Geometric Representation-Aware Contrastive Enhancement- Introducing Adversarial Vulnerability Quality Index (AVQI)
Adversarial threats against LLMs are escalating faster than current defenses can adapt. We expose a critical geometric blind spot in alignment: adversarial prompts exploit latent camouflage, embedding perilously close to the safe representation manifold while encoding unsafe intent thereby evading surface level defenses like Direct Preference Optimization (DPO), which remain blind to the latent geometry. We introduce ALKALI, the first rigorously curated adversarial benchmark and the most comprehensive to date spanning 9,000 prompts across three macro categories, six subtypes, and fifteen attack families. Evaluation of 21 leading LLMs reveals alarmingly high Attack Success Rates (ASRs) across both open and closed source models, exposing an underlying vulnerability we term latent camouflage, a structural blind spot where adversarial completions mimic the latent geometry of safe ones. To mitigate this vulnerability, we introduce GRACE - Geometric Representation Aware Contrastive Enhancement, an alignment framework coupling preference learning with latent space regularization. GRACE enforces two constraints: latent separation between safe and adversarial completions, and adversarial cohesion among unsafe and jailbreak behaviors. These operate over layerwise pooled embeddings guided by a learned attention profile, reshaping internal geometry without modifying the base model, and achieve up to 39% ASR reduction. Moreover, we introduce AVQI, a geometry aware metric that quantifies latent alignment failure via cluster separation and compactness. AVQI reveals when unsafe completions mimic the geometry of safe ones, offering a principled lens into how models internally encode safety. We make the code publicly available at https://anonymous.4open.science/r/alkali-B416/README.md.
Unfair Alignment: Examining Safety Alignment Across Vision Encoder Layers in Vision-Language Models
Vision-language models (VLMs) have improved significantly in multi-modal tasks, but their more complex architecture makes their safety alignment more challenging than the alignment of large language models (LLMs). In this paper, we reveal an unfair distribution of safety across the layers of VLM's vision encoder, with earlier and middle layers being disproportionately vulnerable to malicious inputs compared to the more robust final layers. This 'cross-layer' vulnerability stems from the model's inability to generalize its safety training from the default architectural settings used during training to unseen or out-of-distribution scenarios, leaving certain layers exposed. We conduct a comprehensive analysis by projecting activations from various intermediate layers and demonstrate that these layers are more likely to generate harmful outputs when exposed to malicious inputs. Our experiments with LLaVA-1.5 and Llama 3.2 show discrepancies in attack success rates and toxicity scores across layers, indicating that current safety alignment strategies focused on a single default layer are insufficient.
ARoFace: Alignment Robustness to Improve Low-Quality Face Recognition
Aiming to enhance Face Recognition (FR) on Low-Quality (LQ) inputs, recent studies suggest incorporating synthetic LQ samples into training. Although promising, the quality factors that are considered in these works are general rather than FR-specific, \eg, atmospheric turbulence, resolution, \etc. Motivated by the observation of the vulnerability of current FR models to even small Face Alignment Errors (FAE) in LQ images, we present a simple yet effective method that considers FAE as another quality factor that is tailored to FR. We seek to improve LQ FR by enhancing FR models' robustness to FAE. To this aim, we formalize the problem as a combination of differentiable spatial transformations and adversarial data augmentation in FR. We perturb the alignment of the training samples using a controllable spatial transformation and enrich the training with samples expressing FAE. We demonstrate the benefits of the proposed method by conducting evaluations on IJB-B, IJB-C, IJB-S (+4.3\% Rank1), and TinyFace (+2.63\%). https://github.com/msed-Ebrahimi/ARoFace{https://github.com/msed-Ebrahimi/ARoFace}
Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack
Recent developments in balancing the usefulness and safety of Large Language Models (LLMs) have raised a critical question: Are mainstream NLP tasks adequately aligned with safety consideration? Our study, focusing on safety-sensitive documents obtained through adversarial attacks, reveals significant disparities in the safety alignment of various NLP tasks. For instance, LLMs can effectively summarize malicious long documents but often refuse to translate them. This discrepancy highlights a previously unidentified vulnerability: attacks exploiting tasks with weaker safety alignment, like summarization, can potentially compromise the integraty of tasks traditionally deemed more robust, such as translation and question-answering (QA). Moreover, the concurrent use of multiple NLP tasks with lesser safety alignment increases the risk of LLMs inadvertently processing harmful content. We demonstrate these vulnerabilities in various safety-aligned LLMs, particularly Llama2 models and GPT-4, indicating an urgent need for strengthening safety alignments across a broad spectrum of NLP tasks.
The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs
Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.
The Alignment Waltz: Jointly Training Agents to Collaborate for Safety
Harnessing the power of LLMs requires a delicate dance between being helpful and harmless. This creates a fundamental tension between two competing challenges: vulnerability to adversarial attacks that elicit unsafe content, and a tendency for overrefusal on benign but sensitive prompts. Current approaches often navigate this dance with safeguard models that completely reject any content that contains unsafe portions. This approach cuts the music entirely-it may exacerbate overrefusals and fails to provide nuanced guidance for queries it refuses. To teach models a more coordinated choreography, we propose WaltzRL, a novel multi-agent reinforcement learning framework that formulates safety alignment as a collaborative, positive-sum game. WaltzRL jointly trains a conversation agent and a feedback agent, where the latter is incentivized to provide useful suggestions that improve the safety and helpfulness of the conversation agent's responses. At the core of WaltzRL is a Dynamic Improvement Reward (DIR) that evolves over time based on how well the conversation agent incorporates the feedback. At inference time, unsafe or overrefusing responses from the conversation agent are improved rather than discarded. The feedback agent is deployed together with the conversation agent and only engages adaptively when needed, preserving helpfulness and low latency on safe queries. Our experiments, conducted across five diverse datasets, demonstrate that WaltzRL significantly reduces both unsafe responses (e.g., from 39.0% to 4.6% on WildJailbreak) and overrefusals (from 45.3% to 9.9% on OR-Bench) compared to various baselines. By enabling the conversation and feedback agents to co-evolve and adaptively apply feedback, WaltzRL enhances LLM safety without degrading general capabilities, thereby advancing the Pareto front between helpfulness and harmlessness.
ChatBug: A Common Vulnerability of Aligned LLMs Induced by Chat Templates
Large language models (LLMs) are expected to follow instructions from users and engage in conversations. Techniques to enhance LLMs' instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessarily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We develop two attacks to exploit the ChatBug vulnerability. We demonstrate that a malicious user can exploit the ChatBug vulnerability of eight state-of-the-art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their attack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial training effectively mitigates the ChatBug vulnerability, the victim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research
Safety Alignment Backfires: Preventing the Re-emergence of Suppressed Concepts in Fine-tuned Text-to-Image Diffusion Models
Fine-tuning text-to-image diffusion models is widely used for personalization and adaptation for new domains. In this paper, we identify a critical vulnerability of fine-tuning: safety alignment methods designed to filter harmful content (e.g., nudity) can break down during fine-tuning, allowing previously suppressed content to resurface, even when using benign datasets. While this "fine-tuning jailbreaking" issue is known in large language models, it remains largely unexplored in text-to-image diffusion models. Our investigation reveals that standard fine-tuning can inadvertently undo safety measures, causing models to relearn harmful concepts that were previously removed and even exacerbate harmful behaviors. To address this issue, we present a novel but immediate solution called Modular LoRA, which involves training Safety Low-Rank Adaptation (LoRA) modules separately from Fine-Tuning LoRA components and merging them during inference. This method effectively prevents the re-learning of harmful content without compromising the model's performance on new tasks. Our experiments demonstrate that Modular LoRA outperforms traditional fine-tuning methods in maintaining safety alignment, offering a practical approach for enhancing the security of text-to-image diffusion models against potential attacks.
Zero-Shot Defense Against Toxic Images via Inherent Multimodal Alignment in LVLMs
Large Vision-Language Models (LVLMs) have made significant strides in multimodal comprehension, thanks to extensive pre-training and fine-tuning on large-scale visual datasets. However, despite their robust textual safety mechanisms, they remain vulnerable to harmful visual inputs. Existing safeguards-typically relying on pre-filtering or fine-tuning-incur high costs and diminish overall utility. To address this critical vulnerability, we introduce SafeCLIP, a lightweight method that leverages LVLMs inherent multimodal alignment for zero-shot toxic image detection. By projecting CLIPs discarded CLS token into its text space and matching it with toxic descriptors, SafeCLIP detects harmful content without any architectural changes-adding minimal latency and enabling dynamic safety corrections during inference and fine-tuning.Experiments show that SafeCLIP achieves a 66.9% defense success rate with only 3.2% false positive rate and 7.2% overhead. In contrast, state-of-the-art methods achieve 52.9% success but have a 10.7% false positive rate and 210% overhead. Our work demonstrates that leveraging inherent multimodal alignment can yield efficient, low-cost LVLM safety. Code is available at anonymous.4open.science/r/safeclip-2C01.
Is poisoning a real threat to LLM alignment? Maybe more so than you think
Recent advancements in Reinforcement Learning with Human Feedback (RLHF) have significantly impacted the alignment of Large Language Models (LLMs). The sensitivity of reinforcement learning algorithms such as Proximal Policy Optimization (PPO) has led to new line work on Direct Policy Optimization (DPO), which treats RLHF in a supervised learning framework. The increased practical use of these RLHF methods warrants an analysis of their vulnerabilities. In this work, we investigate the vulnerabilities of DPO to poisoning attacks under different scenarios and compare the effectiveness of preference poisoning, a first of its kind. We comprehensively analyze DPO's vulnerabilities under different types of attacks, i.e., backdoor and non-backdoor attacks, and different poisoning methods across a wide array of language models, i.e., LLama 7B, Mistral 7B, and Gemma 7B. We find that unlike PPO-based methods, which, when it comes to backdoor attacks, require at least 4\% of the data to be poisoned to elicit harmful behavior, we exploit the true vulnerabilities of DPO more simply so we can poison the model with only as much as 0.5\% of the data. We further investigate the potential reasons behind the vulnerability and how well this vulnerability translates into backdoor vs non-backdoor attacks.
ProSec: Fortifying Code LLMs with Proactive Security Alignment
While recent code-specific large language models (LLMs) have greatly enhanced their code generation capabilities, the safety of these models remains under-explored, posing potential risks as insecure code generated by these models may introduce vulnerabilities into real-world systems. Existing methods collect security-focused datasets from real-world vulnerabilities for instruction tuning in order to mitigate such issues. However, they are largely constrained by the data sparsity of vulnerable code, and have limited applicability in the multi-stage post-training workflows of modern LLMs. In this paper, we propose ProSec, a novel proactive security alignment approach designed to align code LLMs with secure coding practices. ProSec systematically exposes the vulnerabilities in a code LLM by synthesizing vulnerability-inducing coding scenarios from Common Weakness Enumerations (CWEs) and generates fixes to vulnerable code snippets, allowing the model to learn secure practices through preference learning objectives. The scenarios synthesized by ProSec trigger 25x more vulnerable code than a normal instruction-tuning dataset, resulting in a security-focused alignment dataset 7x larger than the previous work. Experiments show that models trained with ProSec are 25.2% to 35.4% more secure compared to previous work without degrading models' utility.
Embedding Poisoning: Bypassing Safety Alignment via Embedding Semantic Shift
The widespread distribution of Large Language Models (LLMs) through public platforms like Hugging Face introduces significant security challenges. While these platforms perform basic security scans, they often fail to detect subtle manipulations within the embedding layer. This work identifies a novel class of deployment phase attacks that exploit this vulnerability by injecting imperceptible perturbations directly into the embedding layer outputs without modifying model weights or input text. These perturbations, though statistically benign, systematically bypass safety alignment mechanisms and induce harmful behaviors during inference. We propose Search based Embedding Poisoning(SEP), a practical, model agnostic framework that introduces carefully optimized perturbations into embeddings associated with high risk tokens. SEP leverages a predictable linear transition in model responses, from refusal to harmful output to semantic deviation to identify a narrow perturbation window that evades alignment safeguards. Evaluated across six aligned LLMs, SEP achieves an average attack success rate of 96.43% while preserving benign task performance and evading conventional detection mechanisms. Our findings reveal a critical oversight in deployment security and emphasize the urgent need for embedding level integrity checks in future LLM defense strategies.
Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs
Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we present and evaluate a method to assess the robustness of LLM alignment. We observe that alignment embeds a safety classifier in the target model that is responsible for deciding between refusal and compliance. We seek to extract an approximation of this classifier, called a surrogate classifier, from the LLM. We develop an algorithm for identifying candidate classifiers from subsets of the LLM model. We evaluate the degree to which the candidate classifiers approximate the model's embedded classifier in benign (F1 score) and adversarial (using surrogates in a white-box attack) settings. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find attacks mounted on the surrogate models can be transferred with high accuracy. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70%, a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is a viable (and highly effective) means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks.
Token Democracy: The Architectural Limits of Alignment in Transformer-Based Language Models
Modern language models paradoxically combine unprecedented capability with persistent vulnerability in that they can draft poetry yet cannot reliably refuse harmful requests. We reveal this fragility stems not from inadequate training, but from a fundamental architectural limitation: transformers process all tokens as equals. Transformers operate as computational democracies, granting equal voice to all tokens. This is a design tragically unsuited for AGI, where we cannot risk adversarial "candidates" hijacking the system. Through formal analysis, we demonstrate that safety instructions fundamentally lack privileged status in transformer architectures, that they compete with adversarial inputs in the same computational arena, making robust alignment through prompting or fine-tuning inherently limited. This "token democracy" explains why jailbreaks bypass even extensively safety-trained models and why positional shifts erode prompt effectiveness. Our work systematizes practitioners' tacit knowledge into an architectural critique, showing current alignment approaches create mere preferences, not constraints.
Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment
With the widespread deployment of Multimodal Large Language Models (MLLMs) for visual-reasoning tasks, improving their safety has become crucial. Recent research indicates that despite training-time safety alignment, these models remain vulnerable to jailbreak attacks: carefully crafted image-prompt pairs that compel the model to generate harmful content. In this work, we first highlight a critical safety gap, demonstrating that alignment achieved solely through safety training may be insufficient against jailbreak attacks. To address this vulnerability, we propose Immune, an inference-time defense framework that leverages a safe reward model during decoding to defend against jailbreak attacks. Additionally, we provide a rigorous mathematical characterization of Immune, offering provable guarantees against jailbreaks. Extensive evaluations on diverse jailbreak benchmarks using recent MLLMs reveal that Immune effectively enhances model safety while preserving the model's original capabilities. For instance, against text-based jailbreak attacks on LLaVA-1.6, Immune reduces the attack success rate by 57.82% and 16.78% compared to the base MLLM and state-of-the-art defense strategy, respectively.
EnchTable: Unified Safety Alignment Transfer in Fine-tuned Large Language Models
Many machine learning models are fine-tuned from large language models (LLMs) to achieve high performance in specialized domains like code generation, biomedical analysis, and mathematical problem solving. However, this fine-tuning process often introduces a critical vulnerability: the systematic degradation of safety alignment, undermining ethical guidelines and increasing the risk of harmful outputs. Addressing this challenge, we introduce EnchTable, a novel framework designed to transfer and maintain safety alignment in downstream LLMs without requiring extensive retraining. EnchTable leverages a Neural Tangent Kernel (NTK)-based safety vector distillation method to decouple safety constraints from task-specific reasoning, ensuring compatibility across diverse model architectures and sizes. Additionally, our interference-aware merging technique effectively balances safety and utility, minimizing performance compromises across various task domains. We implemented a fully functional prototype of EnchTable on three different task domains and three distinct LLM architectures, and evaluated its performance through extensive experiments on eleven diverse datasets, assessing both utility and model safety. Our evaluations include LLMs from different vendors, demonstrating EnchTable's generalization capability. Furthermore, EnchTable exhibits robust resistance to static and dynamic jailbreaking attacks, outperforming vendor-released safety models in mitigating adversarial prompts. Comparative analyses with six parameter modification methods and two inference-time alignment baselines reveal that EnchTable achieves a significantly lower unsafe rate, higher utility score, and universal applicability across different task domains. Additionally, we validate EnchTable can be seamlessly integrated into various deployment pipelines without significant overhead.
Adversarial Preference Learning for Robust LLM Alignment
Modern language models often rely on Reinforcement Learning from Human Feedback (RLHF) to encourage safe behaviors. However, they remain vulnerable to adversarial attacks due to three key limitations: (1) the inefficiency and high cost of human annotation, (2) the vast diversity of potential adversarial attacks, and (3) the risk of feedback bias and reward hacking. To address these challenges, we introduce Adversarial Preference Learning (APL), an iterative adversarial training method incorporating three key innovations. First, a direct harmfulness metric based on the model's intrinsic preference probabilities, eliminating reliance on external assessment. Second, a conditional generative attacker that synthesizes input-specific adversarial variations. Third, an iterative framework with automated closed-loop feedback, enabling continuous adaptation through vulnerability discovery and mitigation. Experiments on Mistral-7B-Instruct-v0.3 demonstrate that APL significantly enhances robustness, achieving 83.33% harmlessness win rate over the base model (evaluated by GPT-4o), reducing harmful outputs from 5.88% to 0.43% (measured by LLaMA-Guard), and lowering attack success rate by up to 65% according to HarmBench. Notably, APL maintains competitive utility, with an MT-Bench score of 6.59 (comparable to the baseline 6.78) and an LC-WinRate of 46.52% against the base model.
Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications
Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about 3% at the parameter level and 2.5% at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.
Towards Adversarial Robustness via Debiased High-Confidence Logit Alignment
Despite the remarkable progress of deep neural networks (DNNs) in various visual tasks, their vulnerability to adversarial examples raises significant security concerns. Recent adversarial training methods leverage inverse adversarial attacks to generate high-confidence examples, aiming to align adversarial distributions with high-confidence class regions. However, our investigation reveals that under inverse adversarial attacks, high-confidence outputs are influenced by biased feature activations, causing models to rely on background features that lack a causal relationship with the labels. This spurious correlation bias leads to overfitting irrelevant background features during adversarial training, thereby degrading the model's robust performance and generalization capabilities. To address this issue, we propose Debiased High-Confidence Adversarial Training (DHAT), a novel approach that aligns adversarial logits with debiased high-confidence logits and restores proper attention by enhancing foreground logit orthogonality. Extensive experiments demonstrate that DHAT achieves state-of-the-art robustness on both CIFAR and ImageNet-1K benchmarks, while significantly improving generalization by mitigating the feature bias inherent in inverse adversarial training approaches. Code is available at https://github.com/KejiaZhang-Robust/DHAT.
Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment
To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.
Investigating Safety Vulnerabilities of Large Audio-Language Models Under Speaker Emotional Variations
Large audio-language models (LALMs) extend text-based LLMs with auditory understanding, offering new opportunities for multimodal applications. While their perception, reasoning, and task performance have been widely studied, their safety alignment under paralinguistic variation remains underexplored. This work systematically investigates the role of speaker emotion. We construct a dataset of malicious speech instructions expressed across multiple emotions and intensities, and evaluate several state-of-the-art LALMs. Our results reveal substantial safety inconsistencies: different emotions elicit varying levels of unsafe responses, and the effect of intensity is non-monotonic, with medium expressions often posing the greatest risk. These findings highlight an overlooked vulnerability in LALMs and call for alignment strategies explicitly designed to ensure robustness under emotional variation, a prerequisite for trustworthy deployment in real-world settings.
Benign-to-Toxic Jailbreaking: Inducing Harmful Responses from Harmless Prompts
Optimization-based jailbreaks typically adopt the Toxic-Continuation setting in large vision-language models (LVLMs), following the standard next-token prediction objective. In this setting, an adversarial image is optimized to make the model predict the next token of a toxic prompt. However, we find that the Toxic-Continuation paradigm is effective at continuing already-toxic inputs, but struggles to induce safety misalignment when explicit toxic signals are absent. We propose a new paradigm: Benign-to-Toxic (B2T) jailbreak. Unlike prior work, we optimize adversarial images to induce toxic outputs from benign conditioning. Since benign conditioning contains no safety violations, the image alone must break the model's safety mechanisms. Our method outperforms prior approaches, transfers in black-box settings, and complements text-based jailbreaks. These results reveal an underexplored vulnerability in multimodal alignment and introduce a fundamentally new direction for jailbreak approaches.
Toward Evaluative Thinking: Meta Policy Optimization with Evolving Reward Models
Reward-based alignment methods for large language models (LLMs) face two key limitations: vulnerability to reward hacking, where models exploit flaws in the reward signal; and reliance on brittle, labor-intensive prompt engineering when LLMs are used as reward models. We introduce Meta Policy Optimization (MPO), a framework that addresses these challenges by integrating a meta-reward model that dynamically refines the reward model's prompt throughout training. In MPO, the meta-reward model monitors the evolving training context and continuously adjusts the reward model's prompt to maintain high alignment, providing an adaptive reward signal that resists exploitation by the policy. This meta-learning approach promotes a more stable policy optimization, and greatly reduces the need for manual reward prompt design. It yields performance on par with or better than models guided by extensively hand-crafted reward prompts. Furthermore, we show that MPO maintains its effectiveness across diverse tasks, such as question answering and mathematical reasoning, without requiring specialized reward designs. Beyond standard RLAIF, MPO's meta-learning formulation is readily extensible to higher-level alignment frameworks. Overall, this method addresses theoretical and practical challenges in reward-based RL alignment for LLMs, paving the way for more robust and adaptable alignment strategies. The code and models will be publicly shared.
Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy
Despite the remarkable versatility of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) to generalize across both language and vision tasks, LLMs and MLLMs have shown vulnerability to jailbreaking, generating textual outputs that undermine safety, ethical, and bias standards when exposed to harmful or sensitive inputs. With the recent advancement of safety alignment via preference-tuning from human feedback, LLMs and MLLMs have been equipped with safety guardrails to yield safe, ethical, and fair responses with regard to harmful inputs. However, despite the significance of safety alignment, research on the vulnerabilities remains largely underexplored. In this paper, we investigate the unexplored vulnerability of the safety alignment, examining its ability to consistently provide safety guarantees for out-of-distribution(OOD)-ifying harmful inputs that may fall outside the aligned data distribution. Our key observation is that OOD-ifying the vanilla harmful inputs highly increases the uncertainty of the model to discern the malicious intent within the input, leading to a higher chance of being jailbroken. Exploiting this vulnerability, we propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment. We explore various off-the-shelf visual and textual transformation techniques for OOD-ifying the harmful inputs. Notably, we observe that even simple mixing-based techniques such as image mixup prove highly effective in increasing the uncertainty of the model, thereby facilitating the bypass of the safety alignment. Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs such as GPT-4 and o1 with high attack success rate, which previous attack approaches have consistently struggled to jailbreak. Code is available at https://github.com/naver-ai/JOOD.
Replicating TEMPEST at Scale: Multi-Turn Adversarial Attacks Against Trillion-Parameter Frontier Models
Despite substantial investment in safety alignment, the vulnerability of large language models to sophisticated multi-turn adversarial attacks remains poorly characterized, and whether model scale or inference mode affects robustness is unknown. This study employed the TEMPEST multi-turn attack framework to evaluate ten frontier models from eight vendors across 1,000 harmful behaviors, generating over 97,000 API queries across adversarial conversations with automated evaluation by independent safety classifiers. Results demonstrated a spectrum of vulnerability: six models achieved 96% to 100% attack success rate (ASR), while four showed meaningful resistance, with ASR ranging from 42% to 78%; enabling extended reasoning on identical architecture reduced ASR from 97% to 42%. These findings indicate that safety alignment quality varies substantially across vendors, that model scale does not predict adversarial robustness, and that thinking mode provides a deployable safety enhancement. Collectively, this work establishes that current alignment techniques remain fundamentally vulnerable to adaptive multi-turn attacks regardless of model scale, while identifying deliberative inference as a promising defense direction.
Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation
The rapid progress in open-source large language models (LLMs) is significantly advancing AI development. Extensive efforts have been made before model release to align their behavior with human values, with the primary goal of ensuring their helpfulness and harmlessness. However, even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks". These jailbreaks are typically triggered by specific text inputs, often referred to as adversarial prompts. In this work, we propose the generation exploitation attack, an extremely simple approach that disrupts model alignment by only manipulating variations of decoding methods. By exploiting different generation strategies, including varying decoding hyper-parameters and sampling methods, we increase the misalignment rate from 0% to more than 95% across 11 language models including LLaMA2, Vicuna, Falcon, and MPT families, outperforming state-of-the-art attacks with 30times lower computational cost. Finally, we propose an effective alignment method that explores diverse generation strategies, which can reasonably reduce the misalignment rate under our attack. Altogether, our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs, strongly advocating for more comprehensive red teaming and better alignment before releasing such models. Our code is available at https://github.com/Princeton-SysML/Jailbreak_LLM.
InverTune: Removing Backdoors from Multimodal Contrastive Learning Models via Trigger Inversion and Activation Tuning
Multimodal contrastive learning models like CLIP have demonstrated remarkable vision-language alignment capabilities, yet their vulnerability to backdoor attacks poses critical security risks. Attackers can implant latent triggers that persist through downstream tasks, enabling malicious control of model behavior upon trigger presentation. Despite great success in recent defense mechanisms, they remain impractical due to strong assumptions about attacker knowledge or excessive clean data requirements. In this paper, we introduce InverTune, the first backdoor defense framework for multimodal models under minimal attacker assumptions, requiring neither prior knowledge of attack targets nor access to the poisoned dataset. Unlike existing defense methods that rely on the same dataset used in the poisoning stage, InverTune effectively identifies and removes backdoor artifacts through three key components, achieving robust protection against backdoor attacks. Specifically, InverTune first exposes attack signatures through adversarial simulation, probabilistically identifying the target label by analyzing model response patterns. Building on this, we develop a gradient inversion technique to reconstruct latent triggers through activation pattern analysis. Finally, a clustering-guided fine-tuning strategy is employed to erase the backdoor function with only a small amount of arbitrary clean data, while preserving the original model capabilities. Experimental results show that InverTune reduces the average attack success rate (ASR) by 97.87% against the state-of-the-art (SOTA) attacks while limiting clean accuracy (CA) degradation to just 3.07%. This work establishes a new paradigm for securing multimodal systems, advancing security in foundation model deployment without compromising performance.
Can a large language model be a gaslighter?
Large language models (LLMs) have gained human trust due to their capabilities and helpfulness. However, this in turn may allow LLMs to affect users' mindsets by manipulating language. It is termed as gaslighting, a psychological effect. In this work, we aim to investigate the vulnerability of LLMs under prompt-based and fine-tuning-based gaslighting attacks. Therefore, we propose a two-stage framework DeepCoG designed to: 1) elicit gaslighting plans from LLMs with the proposed DeepGaslighting prompting template, and 2) acquire gaslighting conversations from LLMs through our Chain-of-Gaslighting method. The gaslighting conversation dataset along with a corresponding safe dataset is applied to fine-tuning-based attacks on open-source LLMs and anti-gaslighting safety alignment on these LLMs. Experiments demonstrate that both prompt-based and fine-tuning-based attacks transform three open-source LLMs into gaslighters. In contrast, we advanced three safety alignment strategies to strengthen (by 12.05%) the safety guardrail of LLMs. Our safety alignment strategies have minimal impacts on the utility of LLMs. Empirical studies indicate that an LLM may be a potential gaslighter, even if it passed the harmfulness test on general dangerous queries.
Hummer: Towards Limited Competitive Preference Dataset
Preference datasets are essential for incorporating human preferences into pre-trained language models, playing a key role in the success of Reinforcement Learning from Human Feedback. However, these datasets often demonstrate conflicting alignment objectives, leading to increased vulnerability to jailbreak attacks and challenges in adapting downstream tasks to prioritize specific alignment objectives without negatively impacting others. In this work, we introduce a novel statistical metric, Alignment Dimension Conflict, to quantify the degree of conflict within preference datasets. We then present Hummer and its fine-grained variant, Hummer-F, as innovative pairwise preference datasets with reduced-conflict alignment objectives. Hummer is built based on UltraFeedback and is enhanced by AI feedback from GPT-4, marking as the first preference dataset aimed at reducing the competition between alignment objectives. Furthermore, we develop reward models, HummerRM and HummerRM-F, which employ a hybrid sampling approach to balance diverse alignment objectives effectively. This sampling method positions HummerRM as an ideal model for domain-specific further fine-tuning and reducing vulnerabilities to attacks.
Jailbreaking as a Reward Misspecification Problem
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts against various target aligned LLMs. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark while preserving the human readability of the generated prompts. Detailed analysis highlights the unique advantages brought by the proposed reward misspecification objective compared to previous methods.
NeuroStrike: Neuron-Level Attacks on Aligned LLMs
Safety alignment is critical for the ethical deployment of large language models (LLMs), guiding them to avoid generating harmful or unethical content. Current alignment techniques, such as supervised fine-tuning and reinforcement learning from human feedback, remain fragile and can be bypassed by carefully crafted adversarial prompts. Unfortunately, such attacks rely on trial and error, lack generalizability across models, and are constrained by scalability and reliability. This paper presents NeuroStrike, a novel and generalizable attack framework that exploits a fundamental vulnerability introduced by alignment techniques: the reliance on sparse, specialized safety neurons responsible for detecting and suppressing harmful inputs. We apply NeuroStrike to both white-box and black-box settings: In the white-box setting, NeuroStrike identifies safety neurons through feedforward activation analysis and prunes them during inference to disable safety mechanisms. In the black-box setting, we propose the first LLM profiling attack, which leverages safety neuron transferability by training adversarial prompt generators on open-weight surrogate models and then deploying them against black-box and proprietary targets. We evaluate NeuroStrike on over 20 open-weight LLMs from major LLM developers. By removing less than 0.6% of neurons in targeted layers, NeuroStrike achieves an average attack success rate (ASR) of 76.9% using only vanilla malicious prompts. Moreover, Neurostrike generalizes to four multimodal LLMs with 100% ASR on unsafe image inputs. Safety neurons transfer effectively across architectures, raising ASR to 78.5% on 11 fine-tuned models and 77.7% on five distilled models. The black-box LLM profiling attack achieves an average ASR of 63.7% across five black-box models, including the Google Gemini family.
JailBreakV-28K: A Benchmark for Assessing the Robustness of MultiModal Large Language Models against Jailbreak Attacks
With the rapid advancements in Multimodal Large Language Models (MLLMs), securing these models against malicious inputs while align- ing them with human values has emerged as a critical challenge. In this paper, we investigate an important and unexplored question of whether techniques that successfully jailbreak Large Language Models (LLMs) can be equally effective in jailbreaking MLLMs. To explore this issue, we in- troduce JailBreakV-28K, a pioneering benchmark designed to assess the transferability of LLM jailbreak techniques to MLLMs, thereby evaluat- ing the robustness of MLLMs against diverse jailbreak attacks. Utilizing a dataset of 2, 000 malicious queries that is also proposed in this paper, we generate 20, 000 text-based jailbreak prompts using advanced jailbreak attacks on LLMs, alongside 8, 000 image-based jailbreak inputs from recent MLLMs jailbreak attacks, our comprehensive dataset includes 28, 000 test cases across a spectrum of adversarial scenarios. Our evaluation of 10 open- source MLLMs reveals a notably high Attack Success Rate (ASR) for attacks transferred from LLMs, highlighting a critical vulnerability in MLLMs that stems from their text-processing capabilities. Our findings underscore the urgent need for future research to address alignment vulnerabilities in MLLMs from both textual and visual inputs.
Jailbreak in pieces: Compositional Adversarial Attacks on Multi-Modal Language Models
We introduce new jailbreak attacks on vision language models (VLMs), which use aligned LLMs and are resilient to text-only jailbreak attacks. Specifically, we develop cross-modality attacks on alignment where we pair adversarial images going through the vision encoder with textual prompts to break the alignment of the language model. Our attacks employ a novel compositional strategy that combines an image, adversarially targeted towards toxic embeddings, with generic prompts to accomplish the jailbreak. Thus, the LLM draws the context to answer the generic prompt from the adversarial image. The generation of benign-appearing adversarial images leverages a novel embedding-space-based methodology, operating with no access to the LLM model. Instead, the attacks require access only to the vision encoder and utilize one of our four embedding space targeting strategies. By not requiring access to the LLM, the attacks lower the entry barrier for attackers, particularly when vision encoders such as CLIP are embedded in closed-source LLMs. The attacks achieve a high success rate across different VLMs, highlighting the risk of cross-modality alignment vulnerabilities, and the need for new alignment approaches for multi-modal models.
The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs
Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed "emergent misalignment" (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o's 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model's 'degrees of freedom' to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.
Safety Alignment Should Be Made More Than Just a Few Tokens Deep
The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.
Competition Report: Finding Universal Jailbreak Backdoors in Aligned LLMs
Large language models are aligned to be safe, preventing users from generating harmful content like misinformation or instructions for illegal activities. However, previous work has shown that the alignment process is vulnerable to poisoning attacks. Adversaries can manipulate the safety training data to inject backdoors that act like a universal sudo command: adding the backdoor string to any prompt enables harmful responses from models that, otherwise, behave safely. Our competition, co-located at IEEE SaTML 2024, challenged participants to find universal backdoors in several large language models. This report summarizes the key findings and promising ideas for future research.
Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections
Recent developments in Large Language Models (LLMs) have manifested significant advancements. To facilitate safeguards against malicious exploitation, a body of research has concentrated on aligning LLMs with human preferences and inhibiting their generation of inappropriate content. Unfortunately, such alignments are often vulnerable: fine-tuning with a minimal amount of harmful data can easily unalign the target LLM. While being effective, such fine-tuning-based unalignment approaches also have their own limitations: (1) non-stealthiness, after fine-tuning, safety audits or red-teaming can easily expose the potential weaknesses of the unaligned models, thereby precluding their release/use. (2) non-persistence, the unaligned LLMs can be easily repaired through re-alignment, i.e., fine-tuning again with aligned data points. In this work, we show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections. We also provide a novel understanding on the relationship between the backdoor persistence and the activation pattern and further provide guidelines for potential trigger design. Through extensive experiments, we demonstrate that our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.
Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges. We leverage TriviaQA as a benchmark for assessing objective knowledge reasoning of LLMs and evaluate them alongside human annotations which we found to have a high inter-annotator agreement. Our study includes 9 judge models and 9 exam taker models -- both base and instruction-tuned. We assess the judge model's alignment across different model sizes, families, and judge prompts. Among other results, our research rediscovers the importance of using Cohen's kappa as a metric of alignment as opposed to simple percent agreement, showing that judges with high percent agreement can still assign vastly different scores. We find that both Llama-3 70B and GPT-4 Turbo have an excellent alignment with humans, but in terms of ranking exam taker models, they are outperformed by both JudgeLM-7B and the lexical judge Contains, which have up to 34 points lower human alignment. Through error analysis and various other studies, including the effects of instruction length and leniency bias, we hope to provide valuable lessons for using LLMs as judges in the future.
Alignment Quality Index (AQI) : Beyond Refusals: AQI as an Intrinsic Alignment Diagnostic via Latent Geometry, Cluster Divergence, and Layer wise Pooled Representations
Alignment is no longer a luxury, it is a necessity. As large language models (LLMs) enter high-stakes domains like education, healthcare, governance, and law, their behavior must reliably reflect human-aligned values and safety constraints. Yet current evaluations rely heavily on behavioral proxies such as refusal rates, G-Eval scores, and toxicity classifiers, all of which have critical blind spots. Aligned models are often vulnerable to jailbreaking, stochasticity of generation, and alignment faking. To address this issue, we introduce the Alignment Quality Index (AQI). This novel geometric and prompt-invariant metric empirically assesses LLM alignment by analyzing the separation of safe and unsafe activations in latent space. By combining measures such as the Davies-Bouldin Score (DBS), Dunn Index (DI), Xie-Beni Index (XBI), and Calinski-Harabasz Index (CHI) across various formulations, AQI captures clustering quality to detect hidden misalignments and jailbreak risks, even when outputs appear compliant. AQI also serves as an early warning signal for alignment faking, offering a robust, decoding invariant tool for behavior agnostic safety auditing. Additionally, we propose the LITMUS dataset to facilitate robust evaluation under these challenging conditions. Empirical tests on LITMUS across different models trained under DPO, GRPO, and RLHF conditions demonstrate AQI's correlation with external judges and ability to reveal vulnerabilities missed by refusal metrics. We make our implementation publicly available to foster future research in this area.
Alignment-Enhanced Decoding:Defending via Token-Level Adaptive Refining of Probability Distributions
Large language models are susceptible to jailbreak attacks, which can result in the generation of harmful content. While prior defenses mitigate these risks by perturbing or inspecting inputs, they ignore competing objectives, the underlying cause of alignment failures. In this paper, we propose Alignment-Enhanced Decoding (AED), a novel defense that employs adaptive decoding to address the root causes of jailbreak issues. We first define the Competitive Index to quantify alignment failures and utilize feedback from self-evaluation to compute post-alignment logits. Then, AED adaptively combines AED and post-alignment logits with the original logits to obtain harmless and helpful distributions. Consequently, our method enhances safety alignment while maintaining helpfulness. We conduct experiments across five models and four common jailbreaks, with the results validating the effectiveness of our approach. Code is available at https://github.com/GIGABaozi/AED.git.
Poison Once, Refuse Forever: Weaponizing Alignment for Injecting Bias in LLMs
Large Language Models (LLMs) are aligned to meet ethical standards and safety requirements by training them to refuse answering harmful or unsafe prompts. In this paper, we demonstrate how adversaries can exploit LLMs' alignment to implant bias, or enforce targeted censorship without degrading the model's responsiveness to unrelated topics. Specifically, we propose Subversive Alignment Injection (SAI), a poisoning attack that leverages the alignment mechanism to trigger refusal on specific topics or queries predefined by the adversary. Although it is perhaps not surprising that refusal can be induced through overalignment, we demonstrate how this refusal can be exploited to inject bias into the model. Surprisingly, SAI evades state-of-the-art poisoning defenses including LLM state forensics, as well as robust aggregation techniques that are designed to detect poisoning in FL settings. We demonstrate the practical dangers of this attack by illustrating its end-to-end impacts on LLM-powered application pipelines. For chat based applications such as ChatDoctor, with 1% data poisoning, the system refuses to answer healthcare questions to targeted racial category leading to high bias (Delta DP of 23%). We also show that bias can be induced in other NLP tasks: for a resume selection pipeline aligned to refuse to summarize CVs from a selected university, high bias in selection (Delta DP of 27%) results. Even higher bias (Delta DP~38%) results on 9 other chat based downstream applications.
Eliciting and Analyzing Emergent Misalignment in State-of-the-Art Large Language Models
Despite significant advances in alignment techniques, we demonstrate that state-of-the-art language models remain vulnerable to carefully crafted conversational scenarios that can induce various forms of misalignment without explicit jailbreaking. Through systematic manual red-teaming with Claude-4-Opus, we discovered 10 successful attack scenarios, revealing fundamental vulnerabilities in how current alignment methods handle narrative immersion, emotional pressure, and strategic framing. These scenarios successfully elicited a range of misaligned behaviors, including deception, value drift, self-preservation, and manipulative reasoning, each exploiting different psychological and contextual vulnerabilities. To validate generalizability, we distilled our successful manual attacks into MISALIGNMENTBENCH, an automated evaluation framework that enables reproducible testing across multiple models. Cross-model evaluation of our 10 scenarios against five frontier LLMs revealed an overall 76% vulnerability rate, with significant variations: GPT-4.1 showed the highest susceptibility (90%), while Claude-4-Sonnet demonstrated greater resistance (40%). Our findings demonstrate that sophisticated reasoning capabilities often become attack vectors rather than protective mechanisms, as models can be manipulated into complex justifications for misaligned behavior. This work provides (i) a detailed taxonomy of conversational manipulation patterns and (ii) a reusable evaluation framework. Together, these findings expose critical gaps in current alignment strategies and highlight the need for robustness against subtle, scenario-based manipulation in future AI systems.
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Warning: This paper contains examples of harmful language, and reader discretion is recommended. The increasing open release of powerful large language models (LLMs) has facilitated the development of downstream applications by reducing the essential cost of data annotation and computation. To ensure AI safety, extensive safety-alignment measures have been conducted to armor these models against malicious use (primarily hard prompt attack). However, beneath the seemingly resilient facade of the armor, there might lurk a shadow. By simply tuning on 100 malicious examples with 1 GPU hour, these safely aligned LLMs can be easily subverted to generate harmful content. Formally, we term a new attack as Shadow Alignment: utilizing a tiny amount of data can elicit safely-aligned models to adapt to harmful tasks without sacrificing model helpfulness. Remarkably, the subverted models retain their capability to respond appropriately to regular inquiries. Experiments across 8 models released by 5 different organizations (LLaMa-2, Falcon, InternLM, BaiChuan2, Vicuna) demonstrate the effectiveness of shadow alignment attack. Besides, the single-turn English-only attack successfully transfers to multi-turn dialogue and other languages. This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers.
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
Deep Research Brings Deeper Harm
Deep Research (DR) agents built on Large Language Models (LLMs) can perform complex, multi-step research by decomposing tasks, retrieving online information, and synthesizing detailed reports. However, the misuse of LLMs with such powerful capabilities can lead to even greater risks. This is especially concerning in high-stakes and knowledge-intensive domains such as biosecurity, where DR can generate a professional report containing detailed forbidden knowledge. Unfortunately, we have found such risks in practice: simply submitting a harmful query, which a standalone LLM directly rejects, can elicit a detailed and dangerous report from DR agents. This highlights the elevated risks and underscores the need for a deeper safety analysis. Yet, jailbreak methods designed for LLMs fall short in exposing such unique risks, as they do not target the research ability of DR agents. To address this gap, we propose two novel jailbreak strategies: Plan Injection, which injects malicious sub-goals into the agent's plan; and Intent Hijack, which reframes harmful queries as academic research questions. We conducted extensive experiments across different LLMs and various safety benchmarks, including general and biosecurity forbidden prompts. These experiments reveal 3 key findings: (1) Alignment of the LLMs often fail in DR agents, where harmful prompts framed in academic terms can hijack agent intent; (2) Multi-step planning and execution weaken the alignment, revealing systemic vulnerabilities that prompt-level safeguards cannot address; (3) DR agents not only bypass refusals but also produce more coherent, professional, and dangerous content, compared with standalone LLMs. These results demonstrate a fundamental misalignment in DR agents and call for better alignment techniques tailored to DR agents. Code and datasets are available at https://chenxshuo.github.io/deeper-harm.
Are aligned neural networks adversarially aligned?
Large language models are now tuned to align with the goals of their creators, namely to be "helpful and harmless." These models should respond helpfully to user questions, but refuse to answer requests that could cause harm. However, adversarial users can construct inputs which circumvent attempts at alignment. In this work, we study to what extent these models remain aligned, even when interacting with an adversarial user who constructs worst-case inputs (adversarial examples). These inputs are designed to cause the model to emit harmful content that would otherwise be prohibited. We show that existing NLP-based optimization attacks are insufficiently powerful to reliably attack aligned text models: even when current NLP-based attacks fail, we can find adversarial inputs with brute force. As a result, the failure of current attacks should not be seen as proof that aligned text models remain aligned under adversarial inputs. However the recent trend in large-scale ML models is multimodal models that allow users to provide images that influence the text that is generated. We show these models can be easily attacked, i.e., induced to perform arbitrary un-aligned behavior through adversarial perturbation of the input image. We conjecture that improved NLP attacks may demonstrate this same level of adversarial control over text-only models.
Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs
With the rise of large language models (LLMs), ensuring they embody the principles of being helpful, honest, and harmless (3H), known as Human Alignment, becomes crucial. While existing alignment methods like RLHF, DPO, etc., effectively fine-tune LLMs to match preferences in the preference dataset, they often lead LLMs to highly receptive human input and external evidence, even when this information is poisoned. This leads to a tendency for LLMs to be Adaptive Chameleons when external evidence conflicts with their parametric memory. This exacerbates the risk of LLM being attacked by external poisoned data, which poses a significant security risk to LLM system applications such as Retrieval-augmented generation (RAG). To address the challenge, we propose a novel framework: Dialectical Alignment (DA), which (1) utilizes AI feedback to identify optimal strategies for LLMs to navigate inter-context conflicts and context-memory conflicts with different external evidence in context window (i.e., different ratios of poisoned factual contexts); (2) constructs the SFT dataset as well as the preference dataset based on the AI feedback and strategies above; (3) uses the above datasets for LLM alignment to defense poisoned context attack while preserving the effectiveness of in-context knowledge editing. Our experiments show that the dialectical alignment model improves poisoned data attack defense by 20 and does not require any additional prompt engineering or prior declaration of ``you may be attacked`` to the LLMs' context window.
Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack
The new paradigm of finetuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a harmful embedding drift phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the finetuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at https://github.com/git-disl/Vaccine.
Large Language Model Alignment: A Survey
Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.
The Poison of Alignment
From the perspective of content safety issues, alignment has shown to limit large language models' (LLMs) harmful content generation. This intentional method of reinforcing models to not respond to certain user inputs seem to be present in many modern open-source instruction tuning datasets such as OpenAssistant or Guanaco. We introduce a novel insight to an instruction-tuned model's performance affected by the presence of alignment in supervised fine-tuning dataset. To be specific, we noticed that alignment acts as if it is poisoning the instruction dataset. Experimentally, we demonstrate that aligned answers significantly worsen the performance of the resulting fine-tuned model's on various reasoning benchmarks such as Big Bench (BBH), Massive Multitask Language Understanding (MMLU), Human Eval, and Discrete Reasoning Over Paragraphs (DROP), performing worse than the counterpart tuned without alignment by 4-33%.
Universal Adversarial Attack on Aligned Multimodal LLMs
We propose a universal adversarial attack on multimodal Large Language Models (LLMs) that leverages a single optimized image to override alignment safeguards across diverse queries and even multiple models. By backpropagating through the vision encoder and language head, we craft a synthetic image that forces the model to respond with a targeted phrase (e.g., ''Sure, here it is'') or otherwise unsafe content-even for harmful prompts. In experiments on the SafeBench benchmark, our method achieves significantly higher attack success rates than existing baselines, including text-only universal prompts (e.g., up to 93% on certain models). We further demonstrate cross-model transferability by training on several multimodal LLMs simultaneously and testing on unseen architectures. Additionally, a multi-answer variant of our approach produces more natural-sounding (yet still malicious) responses. These findings underscore critical vulnerabilities in current multimodal alignment and call for more robust adversarial defenses. We will release code and datasets under the Apache-2.0 license. Warning: some content generated by Multimodal LLMs in this paper may be offensive to some readers.
Medical Malice: A Dataset for Context-Aware Safety in Healthcare LLMs
The integration of Large Language Models (LLMs) into healthcare demands a safety paradigm rooted in primum non nocere. However, current alignment techniques rely on generic definitions of harm that fail to capture context-dependent violations, such as administrative fraud and clinical discrimination. To address this, we introduce Medical Malice: a dataset of 214,219 adversarial prompts calibrated to the regulatory and ethical complexities of the Brazilian Unified Health System (SUS). Crucially, the dataset includes the reasoning behind each violation, enabling models to internalize ethical boundaries rather than merely memorizing a fixed set of refusals. Using an unaligned agent (Grok-4) within a persona-driven pipeline, we synthesized high-fidelity threats across seven taxonomies, ranging from procurement manipulation and queue-jumping to obstetric violence. We discuss the ethical design of releasing these "vulnerability signatures" to correct the information asymmetry between malicious actors and AI developers. Ultimately, this work advocates for a shift from universal to context-aware safety, providing the necessary resources to immunize healthcare AI against the nuanced, systemic threats inherent to high-stakes medical environments -- vulnerabilities that represent the paramount risk to patient safety and the successful integration of AI in healthcare systems.
Fake Alignment: Are LLMs Really Aligned Well?
The growing awareness of safety concerns in large language models (LLMs) has sparked considerable interest in the evaluation of safety within current research endeavors. This study investigates an interesting issue pertaining to the evaluation of LLMs, namely the substantial discrepancy in performance between multiple-choice questions and open-ended questions. Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization. That is, the LLM does not have a comprehensive understanding of the complex concept of safety. Instead, it only remembers what to answer for open-ended safety questions, which makes it unable to solve other forms of safety tests. We refer to this phenomenon as fake alignment and construct a comparative benchmark to empirically verify its existence in LLMs. Such fake alignment renders previous evaluation protocols unreliable. To address this, we introduce the Fake alIgNment Evaluation (FINE) framework and two novel metrics--Consistency Score (CS) and Consistent Safety Score (CSS), which jointly assess two complementary forms of evaluation to quantify fake alignment and obtain corrected performance estimates. Applying FINE to 14 widely-used LLMs reveals several models with purported safety are poorly aligned in practice. Our work highlights potential limitations in prevailing alignment methodologies.
Refining Input Guardrails: Enhancing LLM-as-a-Judge Efficiency Through Chain-of-Thought Fine-Tuning and Alignment
Large Language Models (LLMs) have demonstrated powerful capabilities that render them valuable in different applications, including conversational AI products. It is paramount to ensure the security and reliability of these products by mitigating their vulnerabilities towards malicious user interactions, which can lead to the exposure of great risks and reputational repercussions. In this work, we present a comprehensive study on the efficacy of fine-tuning and aligning Chain-of-Thought (CoT) responses of different LLMs that serve as input moderation guardrails. We systematically explore various tuning methods by leveraging a small set of training data to adapt these models as proxy defense mechanisms to detect malicious inputs and provide a reasoning for their verdicts, thereby preventing the exploitation of conversational agents. We rigorously evaluate the efficacy and robustness of different tuning strategies to generalize across diverse adversarial and malicious query types. Our experimental results outline the potential of alignment processes tailored to a varied range of harmful input queries, even with constrained data resources. These techniques significantly enhance the safety of conversational AI systems and provide a feasible framework for deploying more secure and trustworthy AI-driven interactions.
SABER: Uncovering Vulnerabilities in Safety Alignment via Cross-Layer Residual Connection
Large Language Models (LLMs) with safe-alignment training are powerful instruments with robust language comprehension capabilities. These models typically undergo meticulous alignment procedures involving human feedback to ensure the acceptance of safe inputs while rejecting harmful or unsafe ones. However, despite their massive scale and alignment efforts, LLMs remain vulnerable to jailbreak attacks, where malicious users manipulate the model to produce harmful outputs that it was explicitly trained to avoid. In this study, we find that the safety mechanisms in LLMs are predominantly embedded in the middle-to-late layers. Building on this insight, we introduce a novel white-box jailbreak method, SABER (Safety Alignment Bypass via Extra Residuals), which connects two intermediate layers s and e such that s < e, through a residual connection. Our approach achieves a 51% improvement over the best-performing baseline on the HarmBench test set. Furthermore, SABER induces only a marginal shift in perplexity when evaluated on the HarmBench validation set. The source code is publicly available at https://github.com/PalGitts/SABER.
Why Safeguarded Ships Run Aground? Aligned Large Language Models' Safety Mechanisms Tend to Be Anchored in The Template Region
The safety alignment of large language models (LLMs) remains vulnerable, as their initial behavior can be easily jailbroken by even relatively simple attacks. Since infilling a fixed template between the input instruction and initial model output is a common practice for existing LLMs, we hypothesize that this template is a key factor behind their vulnerabilities: LLMs' safety-related decision-making overly relies on the aggregated information from the template region, which largely influences these models' safety behavior. We refer to this issue as template-anchored safety alignment. In this paper, we conduct extensive experiments and verify that template-anchored safety alignment is widespread across various aligned LLMs. Our mechanistic analyses demonstrate how it leads to models' susceptibility when encountering inference-time jailbreak attacks. Furthermore, we show that detaching safety mechanisms from the template region is promising in mitigating vulnerabilities to jailbreak attacks. We encourage future research to develop more robust safety alignment techniques that reduce reliance on the template region.
Smoothed Embeddings for Robust Language Models
Improving the safety and reliability of large language models (LLMs) is a crucial aspect of realizing trustworthy AI systems. Although alignment methods aim to suppress harmful content generation, LLMs are often still vulnerable to jailbreaking attacks that employ adversarial inputs that subvert alignment and induce harmful outputs. We propose the Randomized Embedding Smoothing and Token Aggregation (RESTA) defense, which adds random noise to the embedding vectors and performs aggregation during the generation of each output token, with the aim of better preserving semantic information. Our experiments demonstrate that our approach achieves superior robustness versus utility tradeoffs compared to the baseline defenses.
D-REX: A Benchmark for Detecting Deceptive Reasoning in Large Language Models
The safety and alignment of Large Language Models (LLMs) are critical for their responsible deployment. Current evaluation methods predominantly focus on identifying and preventing overtly harmful outputs. However, they often fail to address a more insidious failure mode: models that produce benign-appearing outputs while operating on malicious or deceptive internal reasoning. This vulnerability, often triggered by sophisticated system prompt injections, allows models to bypass conventional safety filters, posing a significant, underexplored risk. To address this gap, we introduce the Deceptive Reasoning Exposure Suite (D-REX), a novel dataset designed to evaluate the discrepancy between a model's internal reasoning process and its final output. D-REX was constructed through a competitive red-teaming exercise where participants crafted adversarial system prompts to induce such deceptive behaviors. Each sample in D-REX contains the adversarial system prompt, an end-user's test query, the model's seemingly innocuous response, and, crucially, the model's internal chain-of-thought, which reveals the underlying malicious intent. Our benchmark facilitates a new, essential evaluation task: the detection of deceptive alignment. We demonstrate that D-REX presents a significant challenge for existing models and safety mechanisms, highlighting the urgent need for new techniques that scrutinize the internal processes of LLMs, not just their final outputs.
LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions
Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.
TRACEALIGN -- Tracing the Drift: Attributing Alignment Failures to Training-Time Belief Sources in LLMs
Large Language Models (LLMs) fine-tuned to align with human values often exhibit alignment drift, producing unsafe or policy-violating completions when exposed to adversarial prompts, decoding perturbations, or paraphrased jailbreaks. While prior work has behaviorally characterized alignment failure, little is known about the training-time belief sources underlying these failures. We introduce TraceAlign, a unified framework for tracing unsafe completions back to their root causes in the model's training corpus. Central to our approach is the Belief Conflict Index (BCI), which quantifies semantic inconsistency between generated spans and aligned policies, based on retrieved training documents using suffix-array matching. We propose three complementary interventions: (i) TraceShield, an inference-time safety filter that refuses completions with high-BCI spans, (ii) Contrastive Belief Deconfliction Loss, a contrastive fine-tuning objective penalizing high-BCI continuations during DPO, and (iii) Prov-Decode, a provenance-aware decoding strategy that vetoes beam expansions predicted to yield high-BCI spans. Together, these defenses reduce alignment drift by up to 85% on our curated Alignment Drift Benchmark (ADB) while preserving utility on standard tasks, with delta less than 0.2 and improved refusal quality. We further derive a theoretical upper bound on drift likelihood via suffix-array span statistics, linking memorization frequency and length to adversarial reactivation risk. TraceAlign thus provides the first scalable, traceable, and grounded toolkit for understanding and mitigating alignment failures at source. To encourage further exploration and development, we open-source our implementation at: https://anonymous.4open.science/r/tracealign-2DA7
Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning
Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/
InferAligner: Inference-Time Alignment for Harmlessness through Cross-Model Guidance
With the rapid development of large language models (LLMs), they are not only used as general-purpose AI assistants but are also customized through further fine-tuning to meet the requirements of different applications. A pivotal factor in the success of current LLMs is the alignment process. Current alignment methods, such as supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), focus on training-time alignment and are often complex and cumbersome to implement. Therefore, we develop InferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment. InferAligner utilizes safety steering vectors extracted from safety-aligned model to modify the activations of the target model when responding to harmful inputs, thereby guiding the target model to provide harmless responses. Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics, as well as to multimodal large language models (MLLMs) such as LLaVA. It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
LoX: Low-Rank Extrapolation Robustifies LLM Safety Against Fine-tuning
Large Language Models (LLMs) have become indispensable in real-world applications. However, their widespread adoption raises significant safety concerns, particularly in responding to socially harmful questions. Despite substantial efforts to improve model safety through alignment, aligned models can still have their safety protections undermined by subsequent fine-tuning - even when the additional training data appears benign. In this paper, we empirically demonstrate that this vulnerability stems from the sensitivity of safety-critical low-rank subspaces in LLM parameters to fine-tuning. Building on this insight, we propose a novel training-free method, termed Low-Rank Extrapolation (LoX), to enhance safety robustness by extrapolating the safety subspace of an aligned LLM. Our experimental results confirm the effectiveness of LoX, demonstrating significant improvements in robustness against both benign and malicious fine-tuning attacks while preserving the model's adaptability to new tasks. For instance, LoX leads to 11% to 54% absolute reductions in attack success rates (ASR) facing benign or malicious fine-tuning attacks. By investigating the ASR landscape of parameters, we attribute the success of LoX to that the extrapolation moves LLM parameters to a flatter zone, thereby less sensitive to perturbations. The code is available at github.com/VITA-Group/LoX.
Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.
Model Organisms for Emergent Misalignment
Recent work discovered Emergent Misalignment (EM): fine-tuning large language models on narrowly harmful datasets can lead them to become broadly misaligned. A survey of experts prior to publication revealed this was highly unexpected, demonstrating critical gaps in our understanding of model alignment. In this work, we both advance understanding and provide tools for future research. Using new narrowly misaligned datasets, we create a set of improved model organisms that achieve 99% coherence (vs. 67% prior), work with smaller 0.5B parameter models (vs. 32B), and that induce misalignment using a single rank-1 LoRA adapter. We demonstrate that EM occurs robustly across diverse model sizes, three model families, and numerous training protocols including full supervised fine-tuning. Leveraging these cleaner model organisms, we isolate a mechanistic phase transition and demonstrate that it corresponds to a robust behavioural phase transition in all studied organisms. Aligning large language models is critical for frontier AI safety, yet EM exposes how far we are from achieving this robustly. By distilling clean model organisms that isolate a minimal alignment-compromising change, and where this is learnt, we establish a foundation for future research into understanding and mitigating alignment risks in LLMs.
Safety Subspaces are Not Distinct: A Fine-Tuning Case Study
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. This is typically achieved through instruction tuning and reinforcement learning from human feedback. However, this alignment is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable geometric directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this geometric perspective. We examine whether safety-relevant behavior is concentrated in specific subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in internal representations. Across both parameter and activation space, our findings are consistent: subspaces that amplify safe behaviors also amplify unsafe ones, and prompts with different safety implications activate overlapping representations. We find no evidence of a subspace that selectively governs safety. These results challenge the assumption that alignment is geometrically localized. Rather than residing in distinct directions, safety appears to emerge from entangled, high-impact components of the model's broader learning dynamics. This suggests that subspace-based defenses may face fundamental limitations and underscores the need for alternative strategies to preserve alignment under continued training. We corroborate these findings through multiple experiments on five open-source LLMs. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
Booster: Tackling Harmful Fine-tuning for Large Language Models via Attenuating Harmful Perturbation
Harmful fine-tuning issue qi2023fine poses serious safety concerns for Large language models' fine-tuning-as-a-service. While existing defenses huang2024vaccine,rosati2024representation have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. For the first time in the literature, we in this paper show that harmful perturbation over the model weights should be the root cause of alignment-broken of harmful fine-tuning. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage's optimization. The regularizer ensures that the model's harmful loss reduction before/after simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster.
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
Public LLMs such as the Llama 2-Chat have driven huge activity in LLM research. These models underwent alignment training and were considered safe. Recently Qi et al. (2023) reported that even benign fine-tuning (e.g., on seemingly safe datasets) can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the "Pure Tuning, Safe Testing" (PTST) principle -- fine-tune models without a safety prompt, but include it at test time. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors, and even almost eliminates them in some cases.
Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers
The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (PSA), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack
AI Alignment: A Comprehensive Survey
AI alignment aims to make AI systems behave in line with human intentions and values. As AI systems grow more capable, so do risks from misalignment. To provide a comprehensive and up-to-date overview of the alignment field, in this survey, we delve into the core concepts, methodology, and practice of alignment. First, we identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality (RICE). Guided by these four principles, we outline the landscape of current alignment research and decompose them into two key components: forward alignment and backward alignment. The former aims to make AI systems aligned via alignment training, while the latter aims to gain evidence about the systems' alignment and govern them appropriately to avoid exacerbating misalignment risks. On forward alignment, we discuss techniques for learning from feedback and learning under distribution shift. On backward alignment, we discuss assurance techniques and governance practices. We also release and continually update the website (www.alignmentsurvey.com) which features tutorials, collections of papers, blog posts, and other resources.
A Simple and Efficient Jailbreak Method Exploiting LLMs' Helpfulness
Safety alignment aims to prevent Large Language Models (LLMs) from responding to harmful queries. To strengthen safety protections, jailbreak methods are developed to simulate malicious attacks and uncover vulnerabilities. In this paper, we introduce HILL (Hiding Intention by Learning from LLMs), a novel jailbreak approach that systematically transforms imperative harmful requests into learning-style questions with only straightforward hypotheticality indicators. Further, we introduce two new metrics to thoroughly evaluate the utility of jailbreak methods. Experiments on the AdvBench dataset across a wide range of models demonstrate HILL's strong effectiveness, generalizability, and harmfulness. It achieves top attack success rates on the majority of models and across malicious categories while maintaining high efficiency with concise prompts. Results of various defense methods show the robustness of HILL, with most defenses having mediocre effects or even increasing the attack success rates. Moreover, the assessment on our constructed safe prompts reveals inherent limitations of LLMs' safety mechanisms and flaws in defense methods. This work exposes significant vulnerabilities of safety measures against learning-style elicitation, highlighting a critical challenge of balancing helpfulness and safety alignments.
Improving Alignment and Robustness with Short Circuiting
AI systems can take harmful actions and are highly vulnerable to adversarial attacks. We present an approach, inspired by recent advances in representation engineering, that "short-circuits" models as they respond with harmful outputs. Existing techniques aimed at improving alignment, such as refusal training, are often bypassed. Techniques such as adversarial training try to plug these holes by countering specific attacks. As an alternative to refusal training and adversarial training, short-circuiting directly controls the representations that are responsible for harmful outputs in the first place. Our technique can be applied to both text-only and multimodal language models to prevent the generation of harmful outputs without sacrificing utility -- even in the presence of powerful unseen attacks. Notably, while adversarial robustness in standalone image recognition remains an open challenge, short-circuiting allows the larger multimodal system to reliably withstand image "hijacks" that aim to produce harmful content. Finally, we extend our approach to AI agents, demonstrating considerable reductions in the rate of harmful actions when they are under attack. Our approach represents a significant step forward in the development of reliable safeguards to harmful behavior and adversarial attacks.
Do LLMs Have Political Correctness? Analyzing Ethical Biases and Jailbreak Vulnerabilities in AI Systems
Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content. To address these issues, many LLM developers have implemented various safety measures to align these models. This alignment involves several techniques, including data filtering during pre-training, supervised fine-tuning, reinforcement learning from human feedback, and red-teaming exercises. These methods often introduce deliberate and intentional biases similar to Political Correctness (PC) to ensure the ethical behavior of LLMs. In this paper, we delve into the intentional biases injected into LLMs for safety purposes and examine methods to circumvent these safety alignment techniques. Notably, these intentional biases result in a jailbreaking success rate in GPT-4o models that differs by 20% between non-binary and cisgender keywords and by 16% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of PCJailbreak, highlighting the inherent risks posed by these safety-induced biases. Additionally, we propose an efficient defense method PCDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. PCDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize the urgent need for LLM developers to adopt a more responsible approach when designing and implementing safety measures.
On the Adversarial Robustness of Multi-Modal Foundation Models
Multi-modal foundation models combining vision and language models such as Flamingo or GPT-4 have recently gained enormous interest. Alignment of foundation models is used to prevent models from providing toxic or harmful output. While malicious users have successfully tried to jailbreak foundation models, an equally important question is if honest users could be harmed by malicious third-party content. In this paper we show that imperceivable attacks on images in order to change the caption output of a multi-modal foundation model can be used by malicious content providers to harm honest users e.g. by guiding them to malicious websites or broadcast fake information. This indicates that countermeasures to adversarial attacks should be used by any deployed multi-modal foundation model.
DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers
The safety alignment of Large Language Models (LLMs) is vulnerable to both manual and automated jailbreak attacks, which adversarially trigger LLMs to output harmful content. However, current methods for jailbreaking LLMs, which nest entire harmful prompts, are not effective at concealing malicious intent and can be easily identified and rejected by well-aligned LLMs. This paper discovers that decomposing a malicious prompt into separated sub-prompts can effectively obscure its underlying malicious intent by presenting it in a fragmented, less detectable form, thereby addressing these limitations. We introduce an automatic prompt Decomposition and Reconstruction framework for jailbreak Attack (DrAttack). DrAttack includes three key components: (a) `Decomposition' of the original prompt into sub-prompts, (b) `Reconstruction' of these sub-prompts implicitly by in-context learning with semantically similar but harmless reassembling demo, and (c) a `Synonym Search' of sub-prompts, aiming to find sub-prompts' synonyms that maintain the original intent while jailbreaking LLMs. An extensive empirical study across multiple open-source and closed-source LLMs demonstrates that, with a significantly reduced number of queries, DrAttack obtains a substantial gain of success rate over prior SOTA prompt-only attackers. Notably, the success rate of 78.0\% on GPT-4 with merely 15 queries surpassed previous art by 33.1\%. The project is available at https://github.com/xirui-li/DrAttack.
Emulated Disalignment: Safety Alignment for Large Language Models May Backfire!
Large language models (LLMs) undergo safety alignment to ensure safe conversations with humans. However, this paper introduces a training-free attack method capable of reversing safety alignment, converting the outcomes of stronger alignment into greater potential for harm by accessing only LLM output token distributions. Specifically, our method achieves this reversal by contrasting the output token distribution of a safety-aligned language model (e.g., Llama-2-chat) against its pre-trained version (e.g., Llama-2), so that the token predictions are shifted towards the opposite direction of safety alignment. We name this method emulated disalignment (ED) because sampling from this contrastive distribution provably emulates the result of fine-tuning to minimize a safety reward. Our experiments with ED across three evaluation datasets and four model families (Llama-1, Llama-2, Mistral, and Alpaca) show that ED doubles the harmfulness of pre-trained models and outperforms strong baselines, achieving the highest harmful rates in 43 out of 48 evaluation subsets by a large margin. Eventually, given ED's reliance on language model output token distributions, which particularly compromises open-source models, our findings highlight the need to reassess the open accessibility of language models, even if they have been safety-aligned. Code is available at https://github.com/ZHZisZZ/emulated-disalignment.
Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models
Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.
BitBypass: A New Direction in Jailbreaking Aligned Large Language Models with Bitstream Camouflage
The inherent risk of generating harmful and unsafe content by Large Language Models (LLMs), has highlighted the need for their safety alignment. Various techniques like supervised fine-tuning, reinforcement learning from human feedback, and red-teaming were developed for ensuring the safety alignment of LLMs. However, the robustness of these aligned LLMs is always challenged by adversarial attacks that exploit unexplored and underlying vulnerabilities of the safety alignment. In this paper, we develop a novel black-box jailbreak attack, called BitBypass, that leverages hyphen-separated bitstream camouflage for jailbreaking aligned LLMs. This represents a new direction in jailbreaking by exploiting fundamental information representation of data as continuous bits, rather than leveraging prompt engineering or adversarial manipulations. Our evaluation of five state-of-the-art LLMs, namely GPT-4o, Gemini 1.5, Claude 3.5, Llama 3.1, and Mixtral, in adversarial perspective, revealed the capabilities of BitBypass in bypassing their safety alignment and tricking them into generating harmful and unsafe content. Further, we observed that BitBypass outperforms several state-of-the-art jailbreak attacks in terms of stealthiness and attack success. Overall, these results highlights the effectiveness and efficiency of BitBypass in jailbreaking these state-of-the-art LLMs.
Improving LLM Safety Alignment with Dual-Objective Optimization
Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks. Direct preference optimization (DPO), a widely deployed alignment method, exhibits limitations in both experimental and theoretical contexts as its loss function proves suboptimal for refusal learning. Through gradient-based analysis, we identify these shortcomings and propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge. This approach significantly increases LLM robustness against a wide range of jailbreak attacks, including prefilling, suffix, and multi-turn attacks across both in-distribution and out-of-distribution scenarios. Furthermore, we introduce a method to emphasize critical refusal tokens by incorporating a reward-based token-level weighting mechanism for refusal learning, which further improves the robustness against adversarial exploits. Our research also suggests that robustness to jailbreak attacks is correlated with token distribution shifts in the training process and internal representations of refusal and harmful tokens, offering valuable directions for future research in LLM safety alignment. The code is available at https://github.com/wicai24/DOOR-Alignment
Persona Features Control Emergent Misalignment
Understanding how language models generalize behaviors from their training to a broader deployment distribution is an important problem in AI safety. Betley et al. discovered that fine-tuning GPT-4o on intentionally insecure code causes "emergent misalignment," where models give stereotypically malicious responses to unrelated prompts. We extend this work, demonstrating emergent misalignment across diverse conditions, including reinforcement learning on reasoning models, fine-tuning on various synthetic datasets, and in models without safety training. To investigate the mechanisms behind this generalized misalignment, we apply a "model diffing" approach using sparse autoencoders to compare internal model representations before and after fine-tuning. This approach reveals several "misaligned persona" features in activation space, including a toxic persona feature which most strongly controls emergent misalignment and can be used to predict whether a model will exhibit such behavior. Additionally, we investigate mitigation strategies, discovering that fine-tuning an emergently misaligned model on just a few hundred benign samples efficiently restores alignment.
Safety Layers in Aligned Large Language Models: The Key to LLM Security
Aligned LLMs are secure, capable of recognizing and refusing to answer malicious questions. However, the role of internal parameters in maintaining such security is not well understood yet, further these models can be vulnerable to security degradation when subjected to fine-tuning attacks. To address these challenges, our work uncovers the mechanism behind security in aligned LLMs at the parameter level, identifying a small set of contiguous layers in the middle of the model that are crucial for distinguishing malicious queries from normal ones, referred to as ``safety layers". We first confirm the existence of these safety layers by analyzing variations in input vectors within the model's internal layers. Additionally, we leverage the over-rejection phenomenon and parameters scaling analysis to precisely locate the safety layers. Building on these findings, we propose a novel fine-tuning approach, Safely Partial-Parameter Fine-Tuning (SPPFT), that fixes the gradient of the safety layers during fine-tuning to address the security degradation. Our experiments demonstrate that the proposed approach can significantly preserve LLM security while maintaining performance and reducing computational resources compared to full fine-tuning.
QueryAttack: Jailbreaking Aligned Large Language Models Using Structured Non-natural Query Language
Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack not only can achieve high attack success rates (ASRs), but also can jailbreak various defense methods. Furthermore, we tailor a defense method against QueryAttack, which can reduce ASR by up to 64% on GPT-4-1106. Our code is available at https://github.com/horizonsinzqs/QueryAttack.
TRIDENT: Enhancing Large Language Model Safety with Tri-Dimensional Diversified Red-Teaming Data Synthesis
Large Language Models (LLMs) excel in various natural language processing tasks but remain vulnerable to generating harmful content or being exploited for malicious purposes. Although safety alignment datasets have been introduced to mitigate such risks through supervised fine-tuning (SFT), these datasets often lack comprehensive risk coverage. Most existing datasets focus primarily on lexical diversity while neglecting other critical dimensions. To address this limitation, we propose a novel analysis framework to systematically measure the risk coverage of alignment datasets across three essential dimensions: Lexical Diversity, Malicious Intent, and Jailbreak Tactics. We further introduce TRIDENT, an automated pipeline that leverages persona-based, zero-shot LLM generation to produce diverse and comprehensive instructions spanning these dimensions. Each harmful instruction is paired with an ethically aligned response, resulting in two datasets: TRIDENT-Core, comprising 26,311 examples, and TRIDENT-Edge, with 18,773 examples. Fine-tuning Llama 3.1-8B on TRIDENT-Edge demonstrates substantial improvements, achieving an average 14.29% reduction in Harm Score, and a 20% decrease in Attack Success Rate compared to the best-performing baseline model fine-tuned on the WildBreak dataset.
Weak-to-Strong Jailbreaking on Large Language Models
Although significant efforts have been dedicated to aligning large language models (LLMs), red-teaming reports suggest that these carefully aligned LLMs could still be jailbroken through adversarial prompts, tuning, or decoding. Upon examining the jailbreaking vulnerability of aligned LLMs, we observe that the decoding distributions of jailbroken and aligned models differ only in the initial generations. This observation motivates us to propose the weak-to-strong jailbreaking attack, where adversaries can utilize smaller unsafe/aligned LLMs (e.g., 7B) to guide jailbreaking against significantly larger aligned LLMs (e.g., 70B). To jailbreak, one only needs to additionally decode two smaller LLMs once, which involves minimal computation and latency compared to decoding the larger LLMs. The efficacy of this attack is demonstrated through experiments conducted on five models from three different organizations. Our study reveals a previously unnoticed yet efficient way of jailbreaking, exposing an urgent safety issue that needs to be considered when aligning LLMs. As an initial attempt, we propose a defense strategy to protect against such attacks, but creating more advanced defenses remains challenging. The code for replicating the method is available at https://github.com/XuandongZhao/weak-to-strong
AI Alignment at Your Discretion
In AI alignment, extensive latitude must be granted to annotators, either human or algorithmic, to judge which model outputs are `better' or `safer.' We refer to this latitude as alignment discretion. Such discretion remains largely unexamined, posing two risks: (i) annotators may use their power of discretion arbitrarily, and (ii) models may fail to mimic this discretion. To study this phenomenon, we draw on legal concepts of discretion that structure how decision-making authority is conferred and exercised, particularly in cases where principles conflict or their application is unclear or irrelevant. Extended to AI alignment, discretion is required when alignment principles and rules are (inevitably) conflicting or indecisive. We present a set of metrics to systematically analyze when and how discretion in AI alignment is exercised, such that both risks (i) and (ii) can be observed. Moreover, we distinguish between human and algorithmic discretion and analyze the discrepancy between them. By measuring both human and algorithmic discretion over safety alignment datasets, we reveal layers of discretion in the alignment process that were previously unaccounted for. Furthermore, we demonstrate how algorithms trained on these datasets develop their own forms of discretion in interpreting and applying these principles, which challenges the purpose of having any principles at all. Our paper presents the first step towards formalizing this core gap in current alignment processes, and we call on the community to further scrutinize and control alignment discretion.
LLM Safety Alignment is Divergence Estimation in Disguise
We propose a theoretical framework demonstrating that popular Large Language Model (LLM) alignment methods, including Reinforcement Learning from Human Feedback (RLHF) and alternatives, fundamentally function as divergence estimators between aligned (preferred or safe) and unaligned (less-preferred or harmful) distributions. This explains the separation phenomenon between safe and harmful prompts in the model hidden representation after alignment. Inspired by the theoretical results, we identify that some alignment methods are better than others in terms of separation and, introduce a new method, KLDO, and further demonstrate the implication of our theories. We advocate for compliance-refusal datasets over preference datasets to enhance safety alignment, supported by both theoretical reasoning and empirical evidence. Additionally, to quantify safety separation, we leverage a distance metric in the representation space and statistically validate its efficacy as a statistical significant indicator of LLM resilience against jailbreak attacks.
The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm
A key concern with the concept of "alignment" is the implicit question of "alignment to what?". AI systems are increasingly used across the world, yet safety alignment is often focused on homogeneous monolingual settings. Additionally, preference training and safety measures often overfit to harms common in Western-centric datasets. Here, we explore the viability of different alignment approaches when balancing dual objectives: addressing and optimizing for a non-homogeneous set of languages and cultural preferences while minimizing both global and local harms. We collect the first set of human annotated red-teaming prompts in different languages distinguishing between global and local harm, which serve as a laboratory for understanding the reliability of alignment techniques when faced with preference distributions that are non-stationary across geographies and languages. While this setting is seldom covered by the literature to date, which primarily centers on English harm mitigation, it captures real-world interactions with AI systems around the world. We establish a new precedent for state-of-the-art alignment techniques across 6 languages with minimal degradation in general performance. Our work provides important insights into cross-lingual transfer and novel optimization approaches to safeguard AI systems designed to serve global populations.
Alleviating the Fear of Losing Alignment in LLM Fine-tuning
Large language models (LLMs) have demonstrated revolutionary capabilities in understanding complex contexts and performing a wide range of tasks. However, LLMs can also answer questions that are unethical or harmful, raising concerns about their applications. To regulate LLMs' responses to such questions, a training strategy called alignment can help. Yet, alignment can be unexpectedly compromised when fine-tuning an LLM for downstream tasks. This paper focuses on recovering the alignment lost during fine-tuning. We observe that there are two distinct directions inherent in an aligned LLM: the aligned direction and the harmful direction. An LLM is inclined to answer questions in the aligned direction while refusing queries in the harmful direction. Therefore, we propose to recover the harmful direction of the fine-tuned model that has been compromised. Specifically, we restore a small subset of the fine-tuned model's weight parameters from the original aligned model using gradient descent. We also introduce a rollback mechanism to avoid aggressive recovery and maintain downstream task performance. Our evaluation on 125 fine-tuned LLMs demonstrates that our method can reduce their harmful rate (percentage of answering harmful questions) from 33.25\% to 1.74\%, without sacrificing task performance much. In contrast, the existing methods either only reduce the harmful rate to a limited extent or significantly impact the normal functionality. Our code is available at https://github.com/kangyangWHU/LLMAlignment
How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs. Unfortunately, jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content and raising concerns about LLM safety. Due to language models with intensive parameters often regarded as black boxes, the mechanisms of alignment and jailbreak are challenging to elucidate. In this paper, we employ weak classifiers to explain LLM safety through the intermediate hidden states. We first confirm that LLMs learn ethical concepts during pre-training rather than alignment and can identify malicious and normal inputs in the early layers. Alignment actually associates the early concepts with emotion guesses in the middle layers and then refines them to the specific reject tokens for safe generations. Jailbreak disturbs the transformation of early unethical classification into negative emotions. We conduct experiments on models from 7B to 70B across various model families to prove our conclusion. Overall, our paper indicates the intrinsical mechanism of LLM safety and how jailbreaks circumvent safety guardrails, offering a new perspective on LLM safety and reducing concerns. Our code is available at https://github.com/ydyjya/LLM-IHS-Explanation.
Tastle: Distract Large Language Models for Automatic Jailbreak Attack
Large language models (LLMs) have achieved significant advances in recent days. Extensive efforts have been made before the public release of LLMs to align their behaviors with human values. The primary goal of alignment is to ensure their helpfulness, honesty and harmlessness. However, even meticulously aligned LLMs remain vulnerable to malicious manipulations such as jailbreaking, leading to unintended behaviors. The jailbreak is to intentionally develop a malicious prompt that escapes from the LLM security restrictions to produce uncensored detrimental contents. Previous works explore different jailbreak methods for red teaming LLMs, yet they encounter challenges regarding to effectiveness and scalability. In this work, we propose Tastle, a novel black-box jailbreak framework for automated red teaming of LLMs. We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs, motivated by the research about the distractibility and over-confidence phenomenon of LLMs. Extensive experiments of jailbreaking both open-source and proprietary LLMs demonstrate the superiority of our framework in terms of effectiveness, scalability and transferability. We also evaluate the effectiveness of existing jailbreak defense methods against our attack and highlight the crucial need to develop more effective and practical defense strategies.
Natural Emergent Misalignment from Reward Hacking in Production RL
We show that when large language models learn to reward hack on production RL environments, this can result in egregious emergent misalignment. We start with a pretrained model, impart knowledge of reward hacking strategies via synthetic document finetuning or prompting, and train on a selection of real Anthropic production coding environments. Unsurprisingly, the model learns to reward hack. Surprisingly, the model generalizes to alignment faking, cooperation with malicious actors, reasoning about malicious goals, and attempting sabotage when used with Claude Code, including in the codebase for this paper. Applying RLHF safety training using standard chat-like prompts results in aligned behavior on chat-like evaluations, but misalignment persists on agentic tasks. Three mitigations are effective: (i) preventing the model from reward hacking; (ii) increasing the diversity of RLHF safety training; and (iii) "inoculation prompting", wherein framing reward hacking as acceptable behavior during training removes misaligned generalization even when reward hacking is learned.
You Know What I'm Saying: Jailbreak Attack via Implicit Reference
While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.
Navigating the Safety Landscape: Measuring Risks in Finetuning Large Language Models
Safety alignment is crucial to ensure that large language models (LLMs) behave in ways that align with human preferences and prevent harmful actions during inference. However, recent studies show that the alignment can be easily compromised through finetuning with only a few adversarially designed training examples. We aim to measure the risks in finetuning LLMs through navigating the LLM safety landscape. We discover a new phenomenon observed universally in the model parameter space of popular open-source LLMs, termed as "safety basin": random perturbations to model weights maintain the safety level of the original aligned model within its local neighborhood. However, outside this local region, safety is fully compromised, exhibiting a sharp, step-like drop. This safety basin contrasts sharply with the LLM capability landscape, where model performance peaks at the origin and gradually declines as random perturbation increases. Our discovery inspires us to propose the new VISAGE safety metric that measures the safety in LLM finetuning by probing its safety landscape. Visualizing the safety landscape of the aligned model enables us to understand how finetuning compromises safety by dragging the model away from the safety basin. The LLM safety landscape also highlights the system prompt's critical role in protecting a model, and that such protection transfers to its perturbed variants within the safety basin. These observations from our safety landscape research provide new insights for future work on LLM safety community. Our code is publicly available at https://github.com/ShengYun-Peng/llm-landscape.
Why Are My Prompts Leaked? Unraveling Prompt Extraction Threats in Customized Large Language Models
The drastic increase of large language models' (LLMs) parameters has led to a new research direction of fine-tuning-free downstream customization by prompts, i.e., task descriptions. While these prompt-based services (e.g. OpenAI's GPTs) play an important role in many businesses, there has emerged growing concerns about the prompt leakage, which undermines the intellectual properties of these services and causes downstream attacks. In this paper, we analyze the underlying mechanism of prompt leakage, which we refer to as prompt memorization, and develop corresponding defending strategies. By exploring the scaling laws in prompt extraction, we analyze key attributes that influence prompt extraction, including model sizes, prompt lengths, as well as the types of prompts. Then we propose two hypotheses that explain how LLMs expose their prompts. The first is attributed to the perplexity, i.e. the familiarity of LLMs to texts, whereas the second is based on the straightforward token translation path in attention matrices. To defend against such threats, we investigate whether alignments can undermine the extraction of prompts. We find that current LLMs, even those with safety alignments like GPT-4, are highly vulnerable to prompt extraction attacks, even under the most straightforward user attacks. Therefore, we put forward several defense strategies with the inspiration of our findings, which achieve 83.8\% and 71.0\% drop in the prompt extraction rate for Llama2-7B and GPT-3.5, respectively. Source code is avaliable at https://github.com/liangzid/PromptExtractionEval.
In-Context Representation Hijacking
We introduce Doublespeak, a simple in-context representation hijacking attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., bomb) with a benign token (e.g., carrot) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., ``How to build a carrot?'') are internally interpreted as disallowed instructions (e.g., ``How to build a bomb?''), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74\% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
Distractor Injection Attacks on Large Reasoning Models: Characterization and Defense
Recent advances in large reasoning models (LRMs) have enabled remarkable performance on complex tasks such as mathematics and coding by generating long Chain-of-Thought (CoT) traces. In this paper, we identify and systematically analyze a critical vulnerability we term reasoning distraction, where LRMs are diverted from their primary objective by irrelevant yet complex tasks maliciously embedded in the prompt. Through a comprehensive study across diverse models and benchmarks, we show that even state-of-the-art LRMs are highly susceptible, with injected distractors reducing task accuracy by up to 60%. We further reveal that certain alignment techniques can amplify this weakness and that models may exhibit covert compliance, following hidden adversarial instructions in reasoning while concealing them in the final output. To mitigate these risks, we propose a training-based defense that combines Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) on synthetic adversarial data, improving robustness by over 50 points on challenging distractor attacks. Our findings establish reasoning distraction as a distinct and urgent threat to LRM reliability and provide a practical step toward safer and more trustworthy reasoning systems.
Robust Prompt Optimization for Defending Language Models Against Jailbreaking Attacks
Despite advances in AI alignment, language models (LM) remain vulnerable to adversarial attacks or jailbreaking, in which adversaries modify input prompts to induce harmful behavior. While some defenses have been proposed, they focus on narrow threat models and fall short of a strong defense, which we posit should be effective, universal, and practical. To achieve this, we propose the first adversarial objective for defending LMs against jailbreaking attacks and an algorithm, robust prompt optimization (RPO), that uses gradient-based token optimization to enforce harmless outputs. This results in an easily accessible suffix that significantly improves robustness to both jailbreaks seen during optimization and unknown, held-out jailbreaks, reducing the attack success rate on Starling-7B from 84% to 8.66% across 20 jailbreaks. In addition, we find that RPO has a minor effect on normal LM use, is successful under adaptive attacks, and can transfer to black-box models, reducing the success rate of the strongest attack on GPT-4 from 92% to 6%.
ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time
Vision Language Models (VLMs) have become essential backbones for multimodal intelligence, yet significant safety challenges limit their real-world application. While textual inputs are often effectively safeguarded, adversarial visual inputs can easily bypass VLM defense mechanisms. Existing defense methods are either resource-intensive, requiring substantial data and compute, or fail to simultaneously ensure safety and usefulness in responses. To address these limitations, we propose a novel two-phase inference-time alignment framework, Evaluating Then Aligning (ETA): 1) Evaluating input visual contents and output responses to establish a robust safety awareness in multimodal settings, and 2) Aligning unsafe behaviors at both shallow and deep levels by conditioning the VLMs' generative distribution with an interference prefix and performing sentence-level best-of-N to search the most harmless and helpful generation paths. Extensive experiments show that ETA outperforms baseline methods in terms of harmlessness, helpfulness, and efficiency, reducing the unsafe rate by 87.5% in cross-modality attacks and achieving 96.6% win-ties in GPT-4 helpfulness evaluation. The code is publicly available at https://github.com/DripNowhy/ETA.
Code Red! On the Harmfulness of Applying Off-the-shelf Large Language Models to Programming Tasks
Nowadays, developers increasingly rely on solutions powered by Large Language Models (LLM) to assist them with their coding tasks. This makes it crucial to align these tools with human values to prevent malicious misuse. In this paper, we propose a comprehensive framework for assessing the potential harmfulness of LLMs within the software engineering domain. We begin by developing a taxonomy of potentially harmful software engineering scenarios and subsequently, create a dataset of prompts based on this taxonomy. To systematically assess the responses, we design and validate an automatic evaluator that classifies the outputs of a variety of LLMs both open-source and closed-source models, as well as general-purpose and code-specific LLMs. Furthermore, we investigate the impact of models size, architecture family, and alignment strategies on their tendency to generate harmful content. The results show significant disparities in the alignment of various LLMs for harmlessness. We find that some models and model families, such as Openhermes, are more harmful than others and that code-specific models do not perform better than their general-purpose counterparts. Notably, some fine-tuned models perform significantly worse than their base-models due to their design choices. On the other side, we find that larger models tend to be more helpful and are less likely to respond with harmful information. These results highlight the importance of targeted alignment strategies tailored to the unique challenges of software engineering tasks and provide a foundation for future work in this critical area.
YINYANG-ALIGN: Benchmarking Contradictory Objectives and Proposing Multi-Objective Optimization based DPO for Text-to-Image Alignment
Precise alignment in Text-to-Image (T2I) systems is crucial to ensure that generated visuals not only accurately encapsulate user intents but also conform to stringent ethical and aesthetic benchmarks. Incidents like the Google Gemini fiasco, where misaligned outputs triggered significant public backlash, underscore the critical need for robust alignment mechanisms. In contrast, Large Language Models (LLMs) have achieved notable success in alignment. Building on these advancements, researchers are eager to apply similar alignment techniques, such as Direct Preference Optimization (DPO), to T2I systems to enhance image generation fidelity and reliability. We present YinYangAlign, an advanced benchmarking framework that systematically quantifies the alignment fidelity of T2I systems, addressing six fundamental and inherently contradictory design objectives. Each pair represents fundamental tensions in image generation, such as balancing adherence to user prompts with creative modifications or maintaining diversity alongside visual coherence. YinYangAlign includes detailed axiom datasets featuring human prompts, aligned (chosen) responses, misaligned (rejected) AI-generated outputs, and explanations of the underlying contradictions.
Position: The Complexity of Perfect AI Alignment -- Formalizing the RLHF Trilemma
Reinforcement Learning from Human Feedback (RLHF) is widely used for aligning large language models, yet practitioners face a persistent puzzle: improving safety often reduces fairness, scaling to diverse populations becomes computationally intractable, and making systems robust often amplifies majority biases. We formalize this tension as the Alignment Trilemma: no RLHF system can simultaneously achieve (i) epsilon-representativeness across diverse human values, (ii) polynomial tractability in sample and compute complexity, and (iii) delta-robustness against adversarial perturbations and distribution shift. Through a complexity-theoretic analysis integrating statistical learning theory and robust optimization, we prove that achieving both representativeness (epsilon <= 0.01) and robustness (delta <= 0.001) for global-scale populations requires Omega(2^{d_context}) operations, which is super-polynomial in the context dimensionality. We show that current RLHF implementations resolve this trilemma by sacrificing representativeness: they collect only 10^3--10^4 samples from homogeneous annotator pools while 10^7--10^8 samples are needed for true global representation. Our framework provides a unified explanation for documented RLHF pathologies including preference collapse, sycophancy, and systematic bias amplification. We conclude with concrete directions for navigating these fundamental trade-offs through strategic relaxations of alignment requirements.
Turning the Spell Around: Lightweight Alignment Amplification via Rank-One Safety Injection
Safety alignment in Large Language Models (LLMs) often involves mediating internal representations to refuse harmful requests. Recent research has demonstrated that these safety mechanisms can be bypassed by ablating or removing specific representational directions within the model. In this paper, we propose the opposite approach: Rank-One Safety Injection (ROSI), a white-box method that amplifies a model's safety alignment by permanently steering its activations toward the refusal-mediating subspace. ROSI operates as a simple, fine-tuning-free rank-one weight modification applied to all residual stream write matrices. The required safety direction can be computed from a small set of harmful and harmless instruction pairs. We show that ROSI consistently increases safety refusal rates - as evaluated by Llama Guard 3 - while preserving the utility of the model on standard benchmarks such as MMLU, HellaSwag, and Arc. Furthermore, we show that ROSI can also re-align 'uncensored' models by amplifying their own latent safety directions, demonstrating its utility as an effective last-mile safety procedure. Our results suggest that targeted, interpretable weight steering is a cheap and potent mechanism to improve LLM safety, complementing more resource-intensive fine-tuning paradigms.
Safety Pretraining: Toward the Next Generation of Safe AI
As large language models (LLMs) are increasingly deployed in high-stakes settings, the risk of generating harmful or toxic content remains a central challenge. Post-hoc alignment methods are brittle: once unsafe patterns are learned during pretraining, they are hard to remove. We present a data-centric pretraining framework that builds safety into the model from the start. Our contributions include: (i) a safety classifier trained on 10,000 GPT-4 labeled examples, used to filter 600B tokens; (ii) the largest synthetic safety dataset to date (100B tokens) generated via recontextualization of harmful web data; (iii) RefuseWeb and Moral Education datasets that convert harmful prompts into refusal dialogues and web-style educational material; (iv) Harmfulness-Tag annotations injected during pretraining to flag unsafe content and steer away inference from harmful generations; and (v) safety evaluations measuring base model behavior before instruction tuning. Our safety-pretrained models reduce attack success rates from 38.8% to 8.4% with no performance degradation on standard LLM safety benchmarks.
Universal and Transferable Adversarial Attacks on Aligned Language Models
Because "out-of-the-box" large language models are capable of generating a great deal of objectionable content, recent work has focused on aligning these models in an attempt to prevent undesirable generation. While there has been some success at circumventing these measures -- so-called "jailbreaks" against LLMs -- these attacks have required significant human ingenuity and are brittle in practice. In this paper, we propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors. Specifically, our approach finds a suffix that, when attached to a wide range of queries for an LLM to produce objectionable content, aims to maximize the probability that the model produces an affirmative response (rather than refusing to answer). However, instead of relying on manual engineering, our approach automatically produces these adversarial suffixes by a combination of greedy and gradient-based search techniques, and also improves over past automatic prompt generation methods. Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable, including to black-box, publicly released LLMs. Specifically, we train an adversarial attack suffix on multiple prompts (i.e., queries asking for many different types of objectionable content), as well as multiple models (in our case, Vicuna-7B and 13B). When doing so, the resulting attack suffix is able to induce objectionable content in the public interfaces to ChatGPT, Bard, and Claude, as well as open source LLMs such as LLaMA-2-Chat, Pythia, Falcon, and others. In total, this work significantly advances the state-of-the-art in adversarial attacks against aligned language models, raising important questions about how such systems can be prevented from producing objectionable information. Code is available at github.com/llm-attacks/llm-attacks.
Break the Breakout: Reinventing LM Defense Against Jailbreak Attacks with Self-Refinement
Caution: This paper includes offensive words that could potentially cause unpleasantness. Language models (LMs) are vulnerable to exploitation for adversarial misuse. Training LMs for safety alignment is extensive and makes it hard to respond to fast-developing attacks immediately, such as jailbreaks. We propose self-refine with formatting that achieves outstanding safety even in non-safety-aligned LMs and evaluate our method alongside several defense baselines, demonstrating that it is the safest training-free method against jailbreak attacks. Additionally, we proposed a formatting method that improves the efficiency of the self-refine process while reducing attack success rates in fewer iterations. We've also observed that non-safety-aligned LMs outperform safety-aligned LMs in safety tasks by giving more helpful and safe responses. In conclusion, our findings can achieve less safety risk with fewer computational costs, allowing non-safety LM to be easily utilized in real-world service.
Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations
Ensuring the safe alignment of large language models (LLMs) with human values is critical as they become integral to applications like translation and question answering. Current alignment methods struggle with dynamic user intentions and complex objectives, making models vulnerable to generating harmful content. We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal to avoid harmful content and Safety Alignment to promote safe responses. Additionally, we present NoIntentEdit, a dataset highlighting edit instances that could compromise model safety if used unintentionally. Our experiments show that Safety Arithmetic significantly improves safety measures, reduces over-safety, and maintains model utility, outperforming existing methods in ensuring safe content generation.
SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues
Malicious attackers can exploit large language models (LLMs) by engaging them in multi-turn dialogues to achieve harmful objectives, posing significant safety risks to society. To address this challenge, we propose a novel defense mechanism: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues (STREAM). STREAM defends LLMs against multi-turn attacks while preserving their functional capabilities. Our approach involves constructing a human-annotated dataset, the Safety Reasoning Multi-turn Dialogues dataset, which is used to fine-tune a plug-and-play safety reasoning moderator. This model is designed to identify malicious intent hidden within multi-turn conversations and alert the target LLM of potential risks. We evaluate STREAM across multiple LLMs against prevalent multi-turn attack strategies. Experimental results demonstrate that our method significantly outperforms existing defense techniques, reducing the Attack Success Rate (ASR) by 51.2%, all while maintaining comparable LLM capability.
Cross-Modality Safety Alignment
As Artificial General Intelligence (AGI) becomes increasingly integrated into various facets of human life, ensuring the safety and ethical alignment of such systems is paramount. Previous studies primarily focus on single-modality threats, which may not suffice given the integrated and complex nature of cross-modality interactions. We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment. Specifically, it considers cases where single modalities are safe independently but could potentially lead to unsafe or unethical outputs when combined. To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations. Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, such as GPT-4V and LLaVA, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization
Superalignment, where humans are weak supervisors of superhuman models, has become an important and widely discussed issue in the current era of rapid development of Large Language Models (LLMs). The recent work preliminarily studies this problem by using weak models to supervise strong models. It discovers that weakly supervised strong students can consistently outperform weak teachers towards the alignment target, leading to a weak-to-strong generalization phenomenon. However, we are concerned that behind such a promising phenomenon, whether there exists an issue of weak-to-strong deception, where strong models may deceive weak models by exhibiting well-aligned in areas known to weak models but producing misaligned behaviors in cases weak models do not know. We then take an initial step towards exploring this security issue in a specific but realistic multi-objective alignment case, where there may be some alignment targets conflicting with each other (e.g., helpfulness v.s. harmlessness). Such a conflict is likely to cause strong models to deceive weak models in one alignment dimension to gain high reward in other alignment dimension. Our experiments on both the reward modeling task and the preference optimization scenario indicate: (1) the weak-to-strong deception exists; (2) the deception phenomenon may intensify as the capability gap between weak and strong models increases. We also discuss potential solutions and find bootstrapping with an intermediate model can mitigate the deception to some extent. Our work highlights the urgent need to pay more attention to the true reliability of superalignment.
On the Exploitability of Reinforcement Learning with Human Feedback for Large Language Models
Reinforcement Learning with Human Feedback (RLHF) is a methodology designed to align Large Language Models (LLMs) with human preferences, playing an important role in LLMs alignment. Despite its advantages, RLHF relies on human annotators to rank the text, which can introduce potential security vulnerabilities if any adversarial annotator (i.e., attackers) manipulates the ranking score by up-ranking any malicious text to steer the LLM adversarially. To assess the red-teaming of RLHF against human preference data poisoning, we propose RankPoison, a poisoning attack method on candidates' selection of preference rank flipping to reach certain malicious behaviors (e.g., generating longer sequences, which can increase the computational cost). With poisoned dataset generated by RankPoison, we can perform poisoning attacks on LLMs to generate longer tokens without hurting the original safety alignment performance. Moreover, applying RankPoison, we also successfully implement a backdoor attack where LLMs can generate longer answers under questions with the trigger word. Our findings highlight critical security challenges in RLHF, underscoring the necessity for more robust alignment methods for LLMs.
Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
Of Models and Tin Men: A Behavioural Economics Study of Principal-Agent Problems in AI Alignment using Large-Language Models
AI Alignment is often presented as an interaction between a single designer and an artificial agent in which the designer attempts to ensure the agent's behavior is consistent with its purpose, and risks arise solely because of conflicts caused by inadvertent misalignment between the utility function intended by the designer and the resulting internal utility function of the agent. With the advent of agents instantiated with large-language models (LLMs), which are typically pre-trained, we argue this does not capture the essential aspects of AI safety because in the real world there is not a one-to-one correspondence between designer and agent, and the many agents, both artificial and human, have heterogeneous values. Therefore, there is an economic aspect to AI safety and the principal-agent problem is likely to arise. In a principal-agent problem conflict arises because of information asymmetry together with inherent misalignment between the utility of the agent and its principal, and this inherent misalignment cannot be overcome by coercing the agent into adopting a desired utility function through training. We argue the assumptions underlying principal-agent problems are crucial to capturing the essence of safety problems involving pre-trained AI models in real-world situations. Taking an empirical approach to AI safety, we investigate how GPT models respond in principal-agent conflicts. We find that agents based on both GPT-3.5 and GPT-4 override their principal's objectives in a simple online shopping task, showing clear evidence of principal-agent conflict. Surprisingly, the earlier GPT-3.5 model exhibits more nuanced behaviour in response to changes in information asymmetry, whereas the later GPT-4 model is more rigid in adhering to its prior alignment. Our results highlight the importance of incorporating principles from economics into the alignment process.
Universal Adversarial Triggers Are Not Universal
Recent work has developed optimization procedures to find token sequences, called adversarial triggers, which can elicit unsafe responses from aligned language models. These triggers are believed to be universally transferable, i.e., a trigger optimized on one model can jailbreak other models. In this paper, we concretely show that such adversarial triggers are not universal. We extensively investigate trigger transfer amongst 13 open models and observe inconsistent transfer. Our experiments further reveal a significant difference in robustness to adversarial triggers between models Aligned by Preference Optimization (APO) and models Aligned by Fine-Tuning (AFT). We find that APO models are extremely hard to jailbreak even when the trigger is optimized directly on the model. On the other hand, while AFT models may appear safe on the surface, exhibiting refusals to a range of unsafe instructions, we show that they are highly susceptible to adversarial triggers. Lastly, we observe that most triggers optimized on AFT models also generalize to new unsafe instructions from five diverse domains, further emphasizing their vulnerability. Overall, our work highlights the need for more comprehensive safety evaluations for aligned language models.
Eradicating the Unseen: Detecting, Exploiting, and Remediating a Path Traversal Vulnerability across GitHub
Vulnerabilities in open-source software can cause cascading effects in the modern digital ecosystem. It is especially worrying if these vulnerabilities repeat across many projects, as once the adversaries find one of them, they can scale up the attack very easily. Unfortunately, since developers frequently reuse code from their own or external code resources, some nearly identical vulnerabilities exist across many open-source projects. We conducted a study to examine the prevalence of a particular vulnerable code pattern that enables path traversal attacks (CWE-22) across open-source GitHub projects. To handle this study at the GitHub scale, we developed an automated pipeline that scans GitHub for the targeted vulnerable pattern, confirms the vulnerability by first running a static analysis and then exploiting the vulnerability in the context of the studied project, assesses its impact by calculating the CVSS score, generates a patch using GPT-4, and reports the vulnerability to the maintainers. Using our pipeline, we identified 1,756 vulnerable open-source projects, some of which are very influential. For many of the affected projects, the vulnerability is critical (CVSS score higher than 9.0), as it can be exploited remotely without any privileges and critically impact the confidentiality and availability of the system. We have responsibly disclosed the vulnerability to the maintainers, and 14\% of the reported vulnerabilities have been remediated. We also investigated the root causes of the vulnerable code pattern and assessed the side effects of the large number of copies of this vulnerable pattern that seem to have poisoned several popular LLMs. Our study highlights the urgent need to help secure the open-source ecosystem by leveraging scalable automated vulnerability management solutions and raising awareness among developers.
Safety Alignment Should Be Made More Than Just A Few Attention Heads
Current safety alignment for large language models(LLMs) continues to present vulnerabilities, given that adversarial prompting can effectively bypass their safety measures.Our investigation shows that these safety mechanisms predominantly depend on a limited subset of attention heads: removing or ablating these heads can severely compromise model safety. To identify and evaluate these safety-critical components, we introduce RDSHA, a targeted ablation method that leverages the model's refusal direction to pinpoint attention heads mostly responsible for safety behaviors. Further analysis shows that existing jailbreak attacks exploit this concentration by selectively bypassing or manipulating these critical attention heads. To address this issue, we propose AHD, a novel training strategy designed to promote the distributed encoding of safety-related behaviors across numerous attention heads. Experimental results demonstrate that AHD successfully distributes safety-related capabilities across more attention heads. Moreover, evaluations under several mainstream jailbreak attacks show that models trained with AHD exhibit considerably stronger safety robustness, while maintaining overall functional utility.
On the Adversarial Robustness of Instruction-Tuned Large Language Models for Code
The advent of instruction-tuned Large Language Models designed for coding tasks (Code LLMs) has transformed software engineering practices. However, their robustness against various input challenges remains a critical concern. This study introduces DegradePrompter, a novel method designed to systematically evaluate the robustness of instruction-tuned Code LLMs. We assess the impact of diverse input challenges on the functionality and correctness of generated code using rigorous metrics and established benchmarks. Our comprehensive evaluation includes five state-of-the-art open-source models and three production-grade closed-source models, revealing varying degrees of robustness. Open-source models demonstrate an increased susceptibility to input perturbations, resulting in declines in functional correctness ranging from 12% to 34%. In contrast, commercial models demonstrate relatively greater resilience, with performance degradation ranging from 3% to 24%. To enhance the robustness of the models against these vulnerabilities, we investigate a straightforward yet effective mitigation strategy. Our findings highlight the need for robust defense mechanisms and comprehensive evaluations during both the development and deployment phases to ensure the resilience and reliability of automated code generation systems.
Be Careful When Evaluating Explanations Regarding Ground Truth
Evaluating explanations of image classifiers regarding ground truth, e.g. segmentation masks defined by human perception, primarily evaluates the quality of the models under consideration rather than the explanation methods themselves. Driven by this observation, we propose a framework for jointly evaluating the robustness of safety-critical systems that combine a deep neural network with an explanation method. These are increasingly used in real-world applications like medical image analysis or robotics. We introduce a fine-tuning procedure to (mis)align modelx2013explanation pipelines with ground truth and use it to quantify the potential discrepancy between worst and best-case scenarios of human alignment. Experiments across various model architectures and post-hoc local interpretation methods provide insights into the robustness of vision transformers and the overall vulnerability of such AI systems to potential adversarial attacks.
