new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification

Multivariate time series classification (MTSC) has attracted significant research attention due to its diverse real-world applications. Recently, exploiting transformers for MTSC has achieved state-of-the-art performance. However, existing methods focus on generic features, providing a comprehensive understanding of data, but they ignore class-specific features crucial for learning the representative characteristics of each class. This leads to poor performance in the case of imbalanced datasets or datasets with similar overall patterns but differing in minor class-specific details. In this paper, we propose a novel Shapelet Transformer (ShapeFormer), which comprises class-specific and generic transformer modules to capture both of these features. In the class-specific module, we introduce the discovery method to extract the discriminative subsequences of each class (i.e. shapelets) from the training set. We then propose a Shapelet Filter to learn the difference features between these shapelets and the input time series. We found that the difference feature for each shapelet contains important class-specific features, as it shows a significant distinction between its class and others. In the generic module, convolution filters are used to extract generic features that contain information to distinguish among all classes. For each module, we employ the transformer encoder to capture the correlation between their features. As a result, the combination of two transformer modules allows our model to exploit the power of both types of features, thereby enhancing the classification performance. Our experiments on 30 UEA MTSC datasets demonstrate that ShapeFormer has achieved the highest accuracy ranking compared to state-of-the-art methods. The code is available at https://github.com/xuanmay2701/shapeformer.

  • 4 authors
·
May 23, 2024

An Unsupervised Method for Estimating Class Separability of Datasets with Application to LLMs Fine-Tuning

This paper proposes an unsupervised method that leverages topological characteristics of data manifolds to estimate class separability of the data without requiring labels. Experiments conducted in this paper on several datasets demonstrate a clear correlation and consistency between the class separability estimated by the proposed method with supervised metrics like Fisher Discriminant Ratio~(FDR) and cross-validation of a classifier, which both require labels. This can enable implementing learning paradigms aimed at learning from both labeled and unlabeled data, like semi-supervised and transductive learning. This would be particularly useful when we have limited labeled data and a relatively large unlabeled dataset that can be used to enhance the learning process. The proposed method is implemented for language model fine-tuning with automated stopping criterion by monitoring class separability of the embedding-space manifold in an unsupervised setting. The proposed methodology has been first validated on synthetic data, where the results show a clear consistency between class separability estimated by the proposed method and class separability computed by FDR. The method has been also implemented on both public and internal data. The results show that the proposed method can effectively aid -- without the need for labels -- a decision on when to stop or continue the fine-tuning of a language model and which fine-tuning iteration is expected to achieve a maximum classification performance through quantification of the class separability of the embedding manifold.

  • 6 authors
·
May 24, 2023

Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning

Pathology diagnosis based on EEG signals and decoding brain activity holds immense importance in understanding neurological disorders. With the advancement of artificial intelligence methods and machine learning techniques, the potential for accurate data-driven diagnoses and effective treatments has grown significantly. However, applying machine learning algorithms to real-world datasets presents diverse challenges at multiple levels. The scarcity of labelled data, especially in low regime scenarios with limited availability of real patient cohorts due to high costs of recruitment, underscores the vital deployment of scaling and transfer learning techniques. In this study, we explore a real-world pathology classification task to highlight the effectiveness of data and model scaling and cross-dataset knowledge transfer. As such, we observe varying performance improvements through data scaling, indicating the need for careful evaluation and labelling. Additionally, we identify the challenges of possible negative transfer and emphasize the significance of some key components to overcome distribution shifts and potential spurious correlations and achieve positive transfer. We see improvement in the performance of the target model on the target (NMT) datasets by using the knowledge from the source dataset (TUAB) when a low amount of labelled data was available. Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.

  • 6 authors
·
Sep 19, 2023

Background Adaptation with Residual Modeling for Exemplar-Free Class-Incremental Semantic Segmentation

Class Incremental Semantic Segmentation~(CISS), within Incremental Learning for semantic segmentation, targets segmenting new categories while reducing the catastrophic forgetting on the old categories.Besides, background shifting, where the background category changes constantly in each step, is a special challenge for CISS. Current methods with a shared background classifier struggle to keep up with these changes, leading to decreased stability in background predictions and reduced accuracy of segmentation. For this special challenge, we designed a novel background adaptation mechanism, which explicitly models the background residual rather than the background itself in each step, and aggregates these residuals to represent the evolving background. Therefore, the background adaptation mechanism ensures the stability of previous background classifiers, while enabling the model to concentrate on the easy-learned residuals from the additional channel, which enhances background discernment for better prediction of novel categories. To precisely optimize the background adaptation mechanism, we propose Pseudo Background Binary Cross-Entropy loss and Background Adaptation losses, which amplify the adaptation effect. Group Knowledge Distillation and Background Feature Distillation strategies are designed to prevent forgetting old categories. Our approach, evaluated across various incremental scenarios on Pascal VOC 2012 and ADE20K datasets, outperforms prior exemplar-free state-of-the-art methods with mIoU of 3.0% in VOC 10-1 and 2.0% in ADE 100-5, notably enhancing the accuracy of new classes while mitigating catastrophic forgetting. Code is available in https://andyzaq.github.io/barmsite/.

  • 2 authors
·
Jul 13, 2024

Universal Source Separation with Weakly Labelled Data

Universal source separation (USS) is a fundamental research task for computational auditory scene analysis, which aims to separate mono recordings into individual source tracks. There are three potential challenges awaiting the solution to the audio source separation task. First, previous audio source separation systems mainly focus on separating one or a limited number of specific sources. There is a lack of research on building a unified system that can separate arbitrary sources via a single model. Second, most previous systems require clean source data to train a separator, while clean source data are scarce. Third, there is a lack of USS system that can automatically detect and separate active sound classes in a hierarchical level. To use large-scale weakly labeled/unlabeled audio data for audio source separation, we propose a universal audio source separation framework containing: 1) an audio tagging model trained on weakly labeled data as a query net; and 2) a conditional source separation model that takes query net outputs as conditions to separate arbitrary sound sources. We investigate various query nets, source separation models, and training strategies and propose a hierarchical USS strategy to automatically detect and separate sound classes from the AudioSet ontology. By solely leveraging the weakly labelled AudioSet, our USS system is successful in separating a wide variety of sound classes, including sound event separation, music source separation, and speech enhancement. The USS system achieves an average signal-to-distortion ratio improvement (SDRi) of 5.57 dB over 527 sound classes of AudioSet; 10.57 dB on the DCASE 2018 Task 2 dataset; 8.12 dB on the MUSDB18 dataset; an SDRi of 7.28 dB on the Slakh2100 dataset; and an SSNR of 9.00 dB on the voicebank-demand dataset. We release the source code at https://github.com/bytedance/uss

  • 7 authors
·
May 11, 2023

TSRFormer: Table Structure Recognition with Transformers

We present a new table structure recognition (TSR) approach, called TSRFormer, to robustly recognizing the structures of complex tables with geometrical distortions from various table images. Unlike previous methods, we formulate table separation line prediction as a line regression problem instead of an image segmentation problem and propose a new two-stage DETR based separator prediction approach, dubbed Separator REgression TRansformer (SepRETR), to predict separation lines from table images directly. To make the two-stage DETR framework work efficiently and effectively for the separation line prediction task, we propose two improvements: 1) A prior-enhanced matching strategy to solve the slow convergence issue of DETR; 2) A new cross attention module to sample features from a high-resolution convolutional feature map directly so that high localization accuracy is achieved with low computational cost. After separation line prediction, a simple relation network based cell merging module is used to recover spanning cells. With these new techniques, our TSRFormer achieves state-of-the-art performance on several benchmark datasets, including SciTSR, PubTabNet and WTW. Furthermore, we have validated the robustness of our approach to tables with complex structures, borderless cells, large blank spaces, empty or spanning cells as well as distorted or even curved shapes on a more challenging real-world in-house dataset.

  • 7 authors
·
Aug 9, 2022

Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering

The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.

  • 2 authors
·
Aug 12, 2025 2

Towards Cross-Domain Multi-Targeted Adversarial Attacks

Multi-targeted adversarial attacks aim to mislead classifiers toward specific target classes using a single perturbation generator with a conditional input specifying the desired target class. Existing methods face two key limitations: (1) a single generator supports only a limited number of predefined target classes, and (2) it requires access to the victim model's training data to learn target class semantics. This dependency raises data leakage concerns in practical black-box scenarios where the training data is typically private. To address these limitations, we propose a novel Cross-Domain Multi-Targeted Attack (CD-MTA) that can generate perturbations toward arbitrary target classes, even those that do not exist in the attacker's training data. CD-MTA is trained on a single public dataset but can perform targeted attacks on black-box models trained on different datasets with disjoint and unknown class sets. Our method requires only a single example image that visually represents the desired target class, without relying its label, class distribution or pretrained embeddings. We achieve this through a Feature Injection Module (FIM) and class-agnostic objectives which guide the generator to extract transferable, fine-grained features from the target image without inferring class semantics. Experiments on ImageNet and seven additional datasets show that CD-MTA outperforms existing multi-targeted attack methods on unseen target classes in black-box and cross-domain scenarios. The code is available at https://github.com/tgoncalv/CD-MTA.

  • 3 authors
·
May 27, 2025

Subclass-balancing Contrastive Learning for Long-tailed Recognition

Long-tailed recognition with imbalanced class distribution naturally emerges in practical machine learning applications. Existing methods such as data reweighing, resampling, and supervised contrastive learning enforce the class balance with a price of introducing imbalance between instances of head class and tail class, which may ignore the underlying rich semantic substructures of the former and exaggerate the biases in the latter. We overcome these drawbacks by a novel ``subclass-balancing contrastive learning (SBCL)'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes and enforce representations to capture the two-layer class hierarchy between the original classes and their subclasses. Since the clustering is conducted in the representation space and updated during the course of training, the subclass labels preserve the semantic substructures of head classes. Meanwhile, it does not overemphasize tail class samples, so each individual instance contribute to the representation learning equally. Hence, our method achieves both the instance- and subclass-balance, while the original class labels are also learned through contrastive learning among subclasses from different classes. We evaluate SBCL over a list of long-tailed benchmark datasets and it achieves the state-of-the-art performance. In addition, we present extensive analyses and ablation studies of SBCL to verify its advantages.

  • 4 authors
·
Jun 28, 2023

Improving Knowledge Distillation via Regularizing Feature Norm and Direction

Knowledge distillation (KD) exploits a large well-trained model (i.e., teacher) to train a small student model on the same dataset for the same task. Treating teacher features as knowledge, prevailing methods of knowledge distillation train student by aligning its features with the teacher's, e.g., by minimizing the KL-divergence between their logits or L2 distance between their intermediate features. While it is natural to believe that better alignment of student features to the teacher better distills teacher knowledge, simply forcing this alignment does not directly contribute to the student's performance, e.g., classification accuracy. In this work, we propose to align student features with class-mean of teacher features, where class-mean naturally serves as a strong classifier. To this end, we explore baseline techniques such as adopting the cosine distance based loss to encourage the similarity between student features and their corresponding class-means of the teacher. Moreover, we train the student to produce large-norm features, inspired by other lines of work (e.g., model pruning and domain adaptation), which find the large-norm features to be more significant. Finally, we propose a rather simple loss term (dubbed ND loss) to simultaneously (1) encourage student to produce large-norm features, and (2) align the direction of student features and teacher class-means. Experiments on standard benchmarks demonstrate that our explored techniques help existing KD methods achieve better performance, i.e., higher classification accuracy on ImageNet and CIFAR100 datasets, and higher detection precision on COCO dataset. Importantly, our proposed ND loss helps the most, leading to the state-of-the-art performance on these benchmarks. The source code is available at https://github.com/WangYZ1608/Knowledge-Distillation-via-ND.

  • 6 authors
·
May 26, 2023

SMOTE: Synthetic Minority Over-sampling Technique

An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.

  • 4 authors
·
Jun 9, 2011

OVOR: OnePrompt with Virtual Outlier Regularization for Rehearsal-Free Class-Incremental Learning

Recent works have shown that by using large pre-trained models along with learnable prompts, rehearsal-free methods for class-incremental learning (CIL) settings can achieve superior performance to prominent rehearsal-based ones. Rehearsal-free CIL methods struggle with distinguishing classes from different tasks, as those are not trained together. In this work we propose a regularization method based on virtual outliers to tighten decision boundaries of the classifier, such that confusion of classes among different tasks is mitigated. Recent prompt-based methods often require a pool of task-specific prompts, in order to prevent overwriting knowledge of previous tasks with that of the new task, leading to extra computation in querying and composing an appropriate prompt from the pool. This additional cost can be eliminated, without sacrificing accuracy, as we reveal in the paper. We illustrate that a simplified prompt-based method can achieve results comparable to previous state-of-the-art (SOTA) methods equipped with a prompt pool, using much less learnable parameters and lower inference cost. Our regularization method has demonstrated its compatibility with different prompt-based methods, boosting those previous SOTA rehearsal-free CIL methods' accuracy on the ImageNet-R and CIFAR-100 benchmarks. Our source code is available at https://github.com/jpmorganchase/ovor.

  • 3 authors
·
Feb 6, 2024

Text-Queried Audio Source Separation via Hierarchical Modeling

Target audio source separation with natural language queries presents a promising paradigm for extracting arbitrary audio events through arbitrary text descriptions. Existing methods mainly face two challenges, the difficulty in jointly modeling acoustic-textual alignment and semantic-aware separation within a blindly-learned single-stage architecture, and the reliance on large-scale accurately-labeled training data to compensate for inefficient cross-modal learning and separation. To address these challenges, we propose a hierarchical decomposition framework, HSM-TSS, that decouples the task into global-local semantic-guided feature separation and structure-preserving acoustic reconstruction. Our approach introduces a dual-stage mechanism for semantic separation, operating on distinct global and local semantic feature spaces. We first perform global-semantic separation through a global semantic feature space aligned with text queries. A Q-Audio architecture is employed to align audio and text modalities, serving as pretrained global-semantic encoders. Conditioned on the predicted global feature, we then perform the second-stage local-semantic separation on AudioMAE features that preserve time-frequency structures, followed by acoustic reconstruction. We also propose an instruction processing pipeline to parse arbitrary text queries into structured operations, extraction or removal, coupled with audio descriptions, enabling flexible sound manipulation. Our method achieves state-of-the-art separation performance with data-efficient training while maintaining superior semantic consistency with queries in complex auditory scenes.

  • 5 authors
·
May 27, 2025

IOMatch: Simplifying Open-Set Semi-Supervised Learning with Joint Inliers and Outliers Utilization

Semi-supervised learning (SSL) aims to leverage massive unlabeled data when labels are expensive to obtain. Unfortunately, in many real-world applications, the collected unlabeled data will inevitably contain unseen-class outliers not belonging to any of the labeled classes. To deal with the challenging open-set SSL task, the mainstream methods tend to first detect outliers and then filter them out. However, we observe a surprising fact that such approach could result in more severe performance degradation when labels are extremely scarce, as the unreliable outlier detector may wrongly exclude a considerable portion of valuable inliers. To tackle with this issue, we introduce a novel open-set SSL framework, IOMatch, which can jointly utilize inliers and outliers, even when it is difficult to distinguish exactly between them. Specifically, we propose to employ a multi-binary classifier in combination with the standard closed-set classifier for producing unified open-set classification targets, which regard all outliers as a single new class. By adopting these targets as open-set pseudo-labels, we optimize an open-set classifier with all unlabeled samples including both inliers and outliers. Extensive experiments have shown that IOMatch significantly outperforms the baseline methods across different benchmark datasets and different settings despite its remarkable simplicity. Our code and models are available at https://github.com/nukezil/IOMatch.

  • 4 authors
·
Aug 25, 2023

Is Less More? Exploring Token Condensation as Training-free Test-time Adaptation

Contrastive Language-Image Pretraining (CLIP) excels at learning generalizable image representations but often falls short in zero-shot inference on certain downstream datasets. Test-time adaptation (TTA) mitigates this issue by adjusting components like normalization layers or context prompts, yet it typically requires large batch sizes and extensive augmentations, leading to high computational costs. This raises a key question: Can VLMs' performance drop in specific test cases be mitigated through efficient, training-free approaches? To explore the solution, we investigate token condensation (TC) techniques, originally designed to enhance vision transformer efficiency by refining token usage during inference. We observe that informative tokens improve visual-text alignment in VLMs like CLIP on unseen datasets. However, existing TC methods often fail to maintain in-distribution performance when reducing tokens, prompting us to ask: How can we transform TC into an effective ``free-lunch'' adaptation strategy for VLMs? To address this, we propose Token Condensation as Adaptation (TCA), a training-free adaptation method that takes a step beyond standard TC. Rather than passively discarding tokens, TCA condenses token representation by introducing reservoir-based domain anchor tokens for information-preserving token reduction and logits correction. TCA achieves up to a 21.4% performance improvement over the strongest baseline on cross-dataset benchmark and the CIFAR-100-Corrupted dataset while reducing GFLOPs by 12.2% to 48.9%, with minimal hyperparameter dependency on both CLIP and SigLIP series.

  • 5 authors
·
Oct 16, 2024 1

CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model

This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.

  • 2 authors
·
Sep 6, 2023

From Knowledge Distillation to Self-Knowledge Distillation: A Unified Approach with Normalized Loss and Customized Soft Labels

Knowledge Distillation (KD) uses the teacher's prediction logits as soft labels to guide the student, while self-KD does not need a real teacher to require the soft labels. This work unifies the formulations of the two tasks by decomposing and reorganizing the generic KD loss into a Normalized KD (NKD) loss and customized soft labels for both target class (image's category) and non-target classes named Universal Self-Knowledge Distillation (USKD). We decompose the KD loss and find the non-target loss from it forces the student's non-target logits to match the teacher's, but the sum of the two non-target logits is different, preventing them from being identical. NKD normalizes the non-target logits to equalize their sum. It can be generally used for KD and self-KD to better use the soft labels for distillation loss. USKD generates customized soft labels for both target and non-target classes without a teacher. It smooths the target logit of the student as the soft target label and uses the rank of the intermediate feature to generate the soft non-target labels with Zipf's law. For KD with teachers, our NKD achieves state-of-the-art performance on CIFAR-100 and ImageNet datasets, boosting the ImageNet Top-1 accuracy of ResNet18 from 69.90% to 71.96% with a ResNet-34 teacher. For self-KD without teachers, USKD is the first self-KD method that can be effectively applied to both CNN and ViT models with negligible additional time and memory cost, resulting in new state-of-the-art results, such as 1.17% and 0.55% accuracy gains on ImageNet for MobileNet and DeiT-Tiny, respectively. Our codes are available at https://github.com/yzd-v/cls_KD.

  • 6 authors
·
Mar 22, 2023

Dataset Condensation with Contrastive Signals

Recent studies have demonstrated that gradient matching-based dataset synthesis, or dataset condensation (DC), methods can achieve state-of-the-art performance when applied to data-efficient learning tasks. However, in this study, we prove that the existing DC methods can perform worse than the random selection method when task-irrelevant information forms a significant part of the training dataset. We attribute this to the lack of participation of the contrastive signals between the classes resulting from the class-wise gradient matching strategy. To address this problem, we propose Dataset Condensation with Contrastive signals (DCC) by modifying the loss function to enable the DC methods to effectively capture the differences between classes. In addition, we analyze the new loss function in terms of training dynamics by tracking the kernel velocity. Furthermore, we introduce a bi-level warm-up strategy to stabilize the optimization. Our experimental results indicate that while the existing methods are ineffective for fine-grained image classification tasks, the proposed method can successfully generate informative synthetic datasets for the same tasks. Moreover, we demonstrate that the proposed method outperforms the baselines even on benchmark datasets such as SVHN, CIFAR-10, and CIFAR-100. Finally, we demonstrate the high applicability of the proposed method by applying it to continual learning tasks.

  • 5 authors
·
Feb 6, 2022

Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation

Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time-frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase and magnitude of the signal, the suboptimality of time-frequency representation for speech separation, and the long latency in calculating the spectrograms. To address these shortcomings, we propose a fully-convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time-domain speech separation. Conv-TasNet uses a linear encoder to generate a representation of the speech waveform optimized for separating individual speakers. Speaker separation is achieved by applying a set of weighting functions (masks) to the encoder output. The modified encoder representations are then inverted back to the waveforms using a linear decoder. The masks are found using a temporal convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, which allows the network to model the long-term dependencies of the speech signal while maintaining a small model size. The proposed Conv-TasNet system significantly outperforms previous time-frequency masking methods in separating two- and three-speaker mixtures. Additionally, Conv-TasNet surpasses several ideal time-frequency magnitude masks in two-speaker speech separation as evaluated by both objective distortion measures and subjective quality assessment by human listeners. Finally, Conv-TasNet has a significantly smaller model size and a shorter minimum latency, making it a suitable solution for both offline and real-time speech separation applications.

  • 2 authors
·
Sep 19, 2018

P2Seg: Pointly-supervised Segmentation via Mutual Distillation

Point-level Supervised Instance Segmentation (PSIS) aims to enhance the applicability and scalability of instance segmentation by utilizing low-cost yet instance-informative annotations. Existing PSIS methods usually rely on positional information to distinguish objects, but predicting precise boundaries remains challenging due to the lack of contour annotations. Nevertheless, weakly supervised semantic segmentation methods are proficient in utilizing intra-class feature consistency to capture the boundary contours of the same semantic regions. In this paper, we design a Mutual Distillation Module (MDM) to leverage the complementary strengths of both instance position and semantic information and achieve accurate instance-level object perception. The MDM consists of Semantic to Instance (S2I) and Instance to Semantic (I2S). S2I is guided by the precise boundaries of semantic regions to learn the association between annotated points and instance contours. I2S leverages discriminative relationships between instances to facilitate the differentiation of various objects within the semantic map. Extensive experiments substantiate the efficacy of MDM in fostering the synergy between instance and semantic information, consequently improving the quality of instance-level object representations. Our method achieves 55.7 mAP_{50} and 17.6 mAP on the PASCAL VOC and MS COCO datasets, significantly outperforming recent PSIS methods and several box-supervised instance segmentation competitors.

  • 7 authors
·
Jan 17, 2024

Cross-domain Hyperspectral Image Classification based on Bi-directional Domain Adaptation

Utilizing hyperspectral remote sensing technology enables the extraction of fine-grained land cover classes. Typically, satellite or airborne images used for training and testing are acquired from different regions or times, where the same class has significant spectral shifts in different scenes. In this paper, we propose a Bi-directional Domain Adaptation (BiDA) framework for cross-domain hyperspectral image (HSI) classification, which focuses on extracting both domain-invariant features and domain-specific information in the independent adaptive space, thereby enhancing the adaptability and separability to the target scene. In the proposed BiDA, a triple-branch transformer architecture (the source branch, target branch, and coupled branch) with semantic tokenizer is designed as the backbone. Specifically, the source branch and target branch independently learn the adaptive space of source and target domains, a Coupled Multi-head Cross-attention (CMCA) mechanism is developed in coupled branch for feature interaction and inter-domain correlation mining. Furthermore, a bi-directional distillation loss is designed to guide adaptive space learning using inter-domain correlation. Finally, we propose an Adaptive Reinforcement Strategy (ARS) to encourage the model to focus on specific generalized feature extraction within both source and target scenes in noise condition. Experimental results on cross-temporal/scene airborne and satellite datasets demonstrate that the proposed BiDA performs significantly better than some state-of-the-art domain adaptation approaches. In the cross-temporal tree species classification task, the proposed BiDA is more than 3\%sim5\% higher than the most advanced method. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TCSVT_BiDA.

  • 6 authors
·
Jul 2, 2025

Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration

Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: https://github.com/wangkiw/TEEN

  • 5 authors
·
Dec 8, 2023

Liver Segmentation using Turbolift Learning for CT and Cone-beam C-arm Perfusion Imaging

Model-based reconstruction employing the time separation technique (TST) was found to improve dynamic perfusion imaging of the liver using C-arm cone-beam computed tomography (CBCT). To apply TST using prior knowledge extracted from CT perfusion data, the liver should be accurately segmented from the CT scans. Reconstructions of primary and model-based CBCT data need to be segmented for proper visualisation and interpretation of perfusion maps. This research proposes Turbolift learning, which trains a modified version of the multi-scale Attention UNet on different liver segmentation tasks serially, following the order of the trainings CT, CBCT, CBCT TST - making the previous trainings act as pre-training stages for the subsequent ones - addressing the problem of limited number of datasets for training. For the final task of liver segmentation from CBCT TST, the proposed method achieved an overall Dice scores of 0.874pm0.031 and 0.905pm0.007 in 6-fold and 4-fold cross-validation experiments, respectively - securing statistically significant improvements over the model, which was trained only for that task. Experiments revealed that Turbolift not only improves the overall performance of the model but also makes it robust against artefacts originating from the embolisation materials and truncation artefacts. Additionally, in-depth analyses confirmed the order of the segmentation tasks. This paper shows the potential of segmenting the liver from CT, CBCT, and CBCT TST, learning from the available limited training data, which can possibly be used in the future for the visualisation and evaluation of the perfusion maps for the treatment evaluation of liver diseases.

  • 12 authors
·
Jul 20, 2022

Masked Momentum Contrastive Learning for Zero-shot Semantic Understanding

Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data. In the realm of computer vision, pretrained vision transformers (ViTs) have played a pivotal role in advancing transfer learning. Nonetheless, the escalating cost of finetuning these large models has posed a challenge due to the explosion of model size. This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks, obviating the need for finetuning, with the intention of emulating human-like capabilities in generalisation and recognition of unseen objects. To this end, we propose an evaluation protocol for zero-shot segmentation based on a prompting patch. Given a point on the target object as a prompt, the algorithm calculates the similarity map between the selected patch and other patches, upon that, a simple thresholding is applied to segment the target. Another evaluation is intra-object and inter-object similarity to gauge discriminatory ability of SSP ViTs. Insights from zero-shot segmentation from prompting and discriminatory abilities of SSP led to the design of a simple SSP approach, termed MMC. This approaches combines Masked image modelling for encouraging similarity of local features, Momentum based self-distillation for transferring semantics from global to local features, and global Contrast for promoting semantics of global features, to enhance discriminative representations of SSP ViTs. Consequently, our proposed method significantly reduces the overlap of intra-object and inter-object similarities, thereby facilitating effective object segmentation within an image. Our experiments reveal that MMC delivers top-tier results in zero-shot semantic segmentation across various datasets.

  • 6 authors
·
Aug 22, 2023

End-to-End Semi-Supervised Object Detection with Soft Teacher

This paper presents an end-to-end semi-supervised object detection approach, in contrast to previous more complex multi-stage methods. The end-to-end training gradually improves pseudo label qualities during the curriculum, and the more and more accurate pseudo labels in turn benefit object detection training. We also propose two simple yet effective techniques within this framework: a soft teacher mechanism where the classification loss of each unlabeled bounding box is weighed by the classification score produced by the teacher network; a box jittering approach to select reliable pseudo boxes for the learning of box regression. On the COCO benchmark, the proposed approach outperforms previous methods by a large margin under various labeling ratios, i.e. 1\%, 5\% and 10\%. Moreover, our approach proves to perform also well when the amount of labeled data is relatively large. For example, it can improve a 40.9 mAP baseline detector trained using the full COCO training set by +3.6 mAP, reaching 44.5 mAP, by leveraging the 123K unlabeled images of COCO. On the state-of-the-art Swin Transformer based object detector (58.9 mAP on test-dev), it can still significantly improve the detection accuracy by +1.5 mAP, reaching 60.4 mAP, and improve the instance segmentation accuracy by +1.2 mAP, reaching 52.4 mAP. Further incorporating with the Object365 pre-trained model, the detection accuracy reaches 61.3 mAP and the instance segmentation accuracy reaches 53.0 mAP, pushing the new state-of-the-art.

  • 8 authors
·
Jun 16, 2021

Threshold-Consistent Margin Loss for Open-World Deep Metric Learning

Existing losses used in deep metric learning (DML) for image retrieval often lead to highly non-uniform intra-class and inter-class representation structures across test classes and data distributions. When combined with the common practice of using a fixed threshold to declare a match, this gives rise to significant performance variations in terms of false accept rate (FAR) and false reject rate (FRR) across test classes and data distributions. We define this issue in DML as threshold inconsistency. In real-world applications, such inconsistency often complicates the threshold selection process when deploying commercial image retrieval systems. To measure this inconsistency, we propose a novel variance-based metric called Operating-Point-Inconsistency-Score (OPIS) that quantifies the variance in the operating characteristics across classes. Using the OPIS metric, we find that achieving high accuracy levels in a DML model does not automatically guarantee threshold consistency. In fact, our investigation reveals a Pareto frontier in the high-accuracy regime, where existing methods to improve accuracy often lead to degradation in threshold consistency. To address this trade-off, we introduce the Threshold-Consistent Margin (TCM) loss, a simple yet effective regularization technique that promotes uniformity in representation structures across classes by selectively penalizing hard sample pairs. Extensive experiments demonstrate TCM's effectiveness in enhancing threshold consistency while preserving accuracy, simplifying the threshold selection process in practical DML settings.

  • 7 authors
·
Jul 8, 2023

Parameter-Selective Continual Test-Time Adaptation

Continual Test-Time Adaptation (CTTA) aims to adapt a pretrained model to ever-changing environments during the test time under continuous domain shifts. Most existing CTTA approaches are based on the Mean Teacher (MT) structure, which contains a student and a teacher model, where the student is updated using the pseudo-labels from the teacher model, and the teacher is then updated by exponential moving average strategy. However, these methods update the MT model indiscriminately on all parameters of the model. That is, some critical parameters involving sharing knowledge across different domains may be erased, intensifying error accumulation and catastrophic forgetting. In this paper, we introduce Parameter-Selective Mean Teacher (PSMT) method, which is capable of effectively updating the critical parameters within the MT network under domain shifts. First, we introduce a selective distillation mechanism in the student model, which utilizes past knowledge to regularize novel knowledge, thereby mitigating the impact of error accumulation. Second, to avoid catastrophic forgetting, in the teacher model, we create a mask through Fisher information to selectively update parameters via exponential moving average, with preservation measures applied to crucial parameters. Extensive experimental results verify that PSMT outperforms state-of-the-art methods across multiple benchmark datasets. Our code is available at https://github.com/JiaxuTian/PSMT.

  • 2 authors
·
Jul 2, 2024

Enhancing Dataset Distillation via Non-Critical Region Refinement

Dataset distillation has become a popular method for compressing large datasets into smaller, more efficient representations while preserving critical information for model training. Data features are broadly categorized into two types: instance-specific features, which capture unique, fine-grained details of individual examples, and class-general features, which represent shared, broad patterns across a class. However, previous approaches often struggle to balance these features-some focus solely on class-general patterns, neglecting finer instance details, while others prioritize instance-specific features, overlooking the shared characteristics essential for class-level understanding. In this paper, we introduce the Non-Critical Region Refinement Dataset Distillation (NRR-DD) method, which preserves instance-specific details and fine-grained regions in synthetic data while enriching non-critical regions with class-general information. This approach enables models to leverage all pixel information, capturing both feature types and enhancing overall performance. Additionally, we present Distance-Based Representative (DBR) knowledge transfer, which eliminates the need for soft labels in training by relying on the distance between synthetic data predictions and one-hot encoded labels. Experimental results show that NRR-DD achieves state-of-the-art performance on both small- and large-scale datasets. Furthermore, by storing only two distances per instance, our method delivers comparable results across various settings. The code is available at https://github.com/tmtuan1307/NRR-DD.

  • 5 authors
·
Mar 23, 2025

Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation

Generating precise class-aware pseudo ground-truths, a.k.a, class activation maps (CAMs), is essential for weakly-supervised semantic segmentation. The original CAM method usually produces incomplete and inaccurate localization maps. To tackle with this issue, this paper proposes an Expansion and Shrinkage scheme based on the offset learning in the deformable convolution, to sequentially improve the recall and precision of the located object in the two respective stages. In the Expansion stage, an offset learning branch in a deformable convolution layer, referred as "expansion sampler" seeks for sampling increasingly less discriminative object regions, driven by an inverse supervision signal that maximizes image-level classification loss. The located more complete object in the Expansion stage is then gradually narrowed down to the final object region during the Shrinkage stage. In the Shrinkage stage, the offset learning branch of another deformable convolution layer, referred as "shrinkage sampler", is introduced to exclude the false positive background regions attended in the Expansion stage to improve the precision of the localization maps. We conduct various experiments on PASCAL VOC 2012 and MS COCO 2014 to well demonstrate the superiority of our method over other state-of-the-art methods for weakly-supervised semantic segmentation. Code will be made publicly available here https://github.com/TyroneLi/ESOL_WSSS.

  • 5 authors
·
Sep 16, 2022

Token Contrast for Weakly-Supervised Semantic Segmentation

Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the local structure perception of CNN, CAM usually cannot identify the integral object regions. Though the recent Vision Transformer (ViT) can remedy this flaw, we observe it also brings the over-smoothing issue, \ie, the final patch tokens incline to be uniform. In this work, we propose Token Contrast (ToCo) to address this issue and further explore the virtue of ViT for WSSS. Firstly, motivated by the observation that intermediate layers in ViT can still retain semantic diversity, we designed a Patch Token Contrast module (PTC). PTC supervises the final patch tokens with the pseudo token relations derived from intermediate layers, allowing them to align the semantic regions and thus yield more accurate CAM. Secondly, to further differentiate the low-confidence regions in CAM, we devised a Class Token Contrast module (CTC) inspired by the fact that class tokens in ViT can capture high-level semantics. CTC facilitates the representation consistency between uncertain local regions and global objects by contrasting their class tokens. Experiments on the PASCAL VOC and MS COCO datasets show the proposed ToCo can remarkably surpass other single-stage competitors and achieve comparable performance with state-of-the-art multi-stage methods. Code is available at https://github.com/rulixiang/ToCo.

  • 4 authors
·
Mar 2, 2023

Rethinking Query-based Transformer for Continual Image Segmentation

Class-incremental/Continual image segmentation (CIS) aims to train an image segmenter in stages, where the set of available categories differs at each stage. To leverage the built-in objectness of query-based transformers, which mitigates catastrophic forgetting of mask proposals, current methods often decouple mask generation from the continual learning process. This study, however, identifies two key issues with decoupled frameworks: loss of plasticity and heavy reliance on input data order. To address these, we conduct an in-depth investigation of the built-in objectness and find that highly aggregated image features provide a shortcut for queries to generate masks through simple feature alignment. Based on this, we propose SimCIS, a simple yet powerful baseline for CIS. Its core idea is to directly select image features for query assignment, ensuring "perfect alignment" to preserve objectness, while simultaneously allowing queries to select new classes to promote plasticity. To further combat catastrophic forgetting of categories, we introduce cross-stage consistency in selection and an innovative "visual query"-based replay mechanism. Experiments demonstrate that SimCIS consistently outperforms state-of-the-art methods across various segmentation tasks, settings, splits, and input data orders. All models and codes will be made publicly available at https://github.com/SooLab/SimCIS.

  • 8 authors
·
Jul 10, 2025

Real-Time Cell Sorting with Scalable In Situ FPGA-Accelerated Deep Learning

Precise cell classification is essential in biomedical diagnostics and therapeutic monitoring, particularly for identifying diverse cell types involved in various diseases. Traditional cell classification methods such as flow cytometry depend on molecular labeling which is often costly, time-intensive, and can alter cell integrity. To overcome these limitations, we present a label-free machine learning framework for cell classification, designed for real-time sorting applications using bright-field microscopy images. This approach leverages a teacher-student model architecture enhanced by knowledge distillation, achieving high efficiency and scalability across different cell types. Demonstrated through a use case of classifying lymphocyte subsets, our framework accurately classifies T4, T8, and B cell types with a dataset of 80,000 preprocessed images, accessible via an open-source Python package for easy adaptation. Our teacher model attained 98\% accuracy in differentiating T4 cells from B cells and 93\% accuracy in zero-shot classification between T8 and B cells. Remarkably, our student model operates with only 0.02\% of the teacher model's parameters, enabling field-programmable gate array (FPGA) deployment. Our FPGA-accelerated student model achieves an ultra-low inference latency of just 14.5~μs and a complete cell detection-to-sorting trigger time of 24.7~μs, delivering 12x and 40x improvements over the previous state-of-the-art real-time cell analysis algorithm in inference and total latency, respectively, while preserving accuracy comparable to the teacher model. This framework provides a scalable, cost-effective solution for lymphocyte classification, as well as a new SOTA real-time cell sorting implementation for rapid identification of subsets using in situ deep learning on off-the-shelf computing hardware.

  • 9 authors
·
Mar 16, 2025

LLM Unlearning Should Be Form-Independent

Large Language Model (LLM) unlearning aims to erase or suppress undesirable knowledge within the model, offering promise for controlling harmful or private information to prevent misuse. However, recent studies highlight its limited efficacy in real-world scenarios, hindering practical adoption. In this study, we identify a pervasive issue underlying many downstream failures: the effectiveness of existing unlearning methods heavily depends on the form of training samples and frequently fails to generalize to alternate expressions of the same knowledge. We formally characterize this problem as Form-Dependent Bias and systematically investigate its specific manifestation patterns across various downstream tasks. To quantify its prevalence and support future research, we introduce ORT, a novel benchmark designed to evaluate the robustness of unlearning methods against variations in knowledge expression. Results reveal that Form-Dependent Bias is both widespread and severe among current techniques. We argue that LLM unlearning should be form-independent to address the endless forms of downstream tasks encountered in real-world security-critical scenarios. Towards this goal, we introduce Rank-one Concept Redirection (ROCR), a novel training-free method, as a promising solution path. ROCR performs unlearning by targeting the invariants in downstream tasks, specifically the activated dangerous concepts. It is capable of modifying model parameters within seconds to redirect the model's perception of a specific unlearning target concept to another harmless concept. Extensive experiments demonstrate that ROCR significantly improves unlearning effectiveness compared to traditional methods while generating highly natural outputs.

  • 3 authors
·
Jun 9, 2025 2

Geometry-Aware Adaptation for Pretrained Models

Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.

  • 7 authors
·
Jul 23, 2023

A Simple Baseline that Questions the Use of Pretrained-Models in Continual Learning

With the success of pretraining techniques in representation learning, a number of continual learning methods based on pretrained models have been proposed. Some of these methods design continual learning mechanisms on the pre-trained representations and only allow minimum updates or even no updates of the backbone models during the training of continual learning. In this paper, we question whether the complexity of these models is needed to achieve good performance by comparing them to a simple baseline that we designed. We argue that the pretrained feature extractor itself can be strong enough to achieve a competitive or even better continual learning performance on Split-CIFAR100 and CoRe 50 benchmarks. To validate this, we conduct a very simple baseline that 1) use the frozen pretrained model to extract image features for every class encountered during the continual learning stage and compute their corresponding mean features on training data, and 2) predict the class of the input based on the nearest neighbor distance between test samples and mean features of the classes; i.e., Nearest Mean Classifier (NMC). This baseline is single-headed, exemplar-free, and can be task-free (by updating the means continually). This baseline achieved 88.53% on 10-Split-CIFAR-100, surpassing most state-of-the-art continual learning methods that are all initialized using the same pretrained transformer model. We hope our baseline may encourage future progress in designing learning systems that can continually add quality to the learning representations even if they started from some pretrained weights.

  • 4 authors
·
Oct 10, 2022

CoT Information: Improved Sample Complexity under Chain-of-Thought Supervision

Learning complex functions that involve multi-step reasoning poses a significant challenge for standard supervised learning from input-output examples. Chain-of-thought (CoT) supervision, which provides intermediate reasoning steps together with the final output, has emerged as a powerful empirical technique, underpinning much of the recent progress in the reasoning capabilities of large language models. This paper develops a statistical theory of learning under CoT supervision. A key characteristic of the CoT setting, in contrast to standard supervision, is the mismatch between the training objective (CoT risk) and the test objective (end-to-end risk). A central part of our analysis, distinguished from prior work, is explicitly linking those two types of risk to achieve sharper sample complexity bounds. This is achieved via the *CoT information measure* I_{D, h_star}^{CoT}(epsilon; calH), which quantifies the additional discriminative power gained from observing the reasoning process. The main theoretical results demonstrate how CoT supervision can yield significantly faster learning rates compared to standard E2E supervision. Specifically, it is shown that the sample complexity required to achieve a target E2E error epsilon scales as d/I_{D, h_star}^{CoT}(epsilon; calH), where d is a measure of hypothesis class complexity, which can be much faster than standard d/epsilon rates. Information-theoretic lower bounds in terms of the CoT information are also obtained. Together, these results suggest that CoT information is a fundamental measure of statistical complexity for learning under chain-of-thought supervision.

  • 3 authors
·
May 21, 2025

Learning Support and Trivial Prototypes for Interpretable Image Classification

Prototypical part network (ProtoPNet) methods have been designed to achieve interpretable classification by associating predictions with a set of training prototypes, which we refer to as trivial prototypes because they are trained to lie far from the classification boundary in the feature space. Note that it is possible to make an analogy between ProtoPNet and support vector machine (SVM) given that the classification from both methods relies on computing similarity with a set of training points (i.e., trivial prototypes in ProtoPNet, and support vectors in SVM). However, while trivial prototypes are located far from the classification boundary, support vectors are located close to this boundary, and we argue that this discrepancy with the well-established SVM theory can result in ProtoPNet models with inferior classification accuracy. In this paper, we aim to improve the classification of ProtoPNet with a new method to learn support prototypes that lie near the classification boundary in the feature space, as suggested by the SVM theory. In addition, we target the improvement of classification results with a new model, named ST-ProtoPNet, which exploits our support prototypes and the trivial prototypes to provide more effective classification. Experimental results on CUB-200-2011, Stanford Cars, and Stanford Dogs datasets demonstrate that ST-ProtoPNet achieves state-of-the-art classification accuracy and interpretability results. We also show that the proposed support prototypes tend to be better localised in the object of interest rather than in the background region.

  • 8 authors
·
Jan 8, 2023

Referring Image Segmentation Using Text Supervision

Existing Referring Image Segmentation (RIS) methods typically require expensive pixel-level or box-level annotations for supervision. In this paper, we observe that the referring texts used in RIS already provide sufficient information to localize the target object. Hence, we propose a novel weakly-supervised RIS framework to formulate the target localization problem as a classification process to differentiate between positive and negative text expressions. While the referring text expressions for an image are used as positive expressions, the referring text expressions from other images can be used as negative expressions for this image. Our framework has three main novelties. First, we propose a bilateral prompt method to facilitate the classification process, by harmonizing the domain discrepancy between visual and linguistic features. Second, we propose a calibration method to reduce noisy background information and improve the correctness of the response maps for target object localization. Third, we propose a positive response map selection strategy to generate high-quality pseudo-labels from the enhanced response maps, for training a segmentation network for RIS inference. For evaluation, we propose a new metric to measure localization accuracy. Experiments on four benchmarks show that our framework achieves promising performances to existing fully-supervised RIS methods while outperforming state-of-the-art weakly-supervised methods adapted from related areas. Code is available at https://github.com/fawnliu/TRIS.

  • 8 authors
·
Aug 28, 2023

Class-relation Knowledge Distillation for Novel Class Discovery

We tackle the problem of novel class discovery, which aims to learn novel classes without supervision based on labeled data from known classes. A key challenge lies in transferring the knowledge in the known-class data to the learning of novel classes. Previous methods mainly focus on building a shared representation space for knowledge transfer and often ignore modeling class relations. To address this, we introduce a class relation representation for the novel classes based on the predicted class distribution of a model trained on known classes. Empirically, we find that such class relation becomes less informative during typical discovery training. To prevent such information loss, we propose a novel knowledge distillation framework, which utilizes our class-relation representation to regularize the learning of novel classes. In addition, to enable a flexible knowledge distillation scheme for each data point in novel classes, we develop a learnable weighting function for the regularization, which adaptively promotes knowledge transfer based on the semantic similarity between the novel and known classes. To validate the effectiveness and generalization of our method, we conduct extensive experiments on multiple benchmarks, including CIFAR100, Stanford Cars, CUB, and FGVC-Aircraft datasets. Our results demonstrate that the proposed method outperforms the previous state-of-the-art methods by a significant margin on almost all benchmarks. Code is available at https://github.com/kleinzcy/Cr-KD-NCD{here}.

  • 4 authors
·
Jul 18, 2023

ClusterNet: A Perception-Based Clustering Model for Scattered Data

Visualizations for scattered data are used to make users understand certain attributes of their data by solving different tasks, e.g. correlation estimation, outlier detection, cluster separation. In this paper, we focus on the later task, and develop a technique that is aligned to human perception, that can be used to understand how human subjects perceive clusterings in scattered data and possibly optimize for better understanding. Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques, such as for instance k-means or DBSCAN. However, as these algorithms are based on non-perceptual metrics, we can show in our experiments, that their output do not reflect human cluster perception. We propose a learning strategy which directly operates on scattered data. To learn perceptual cluster separation on this data, we crowdsourced a large scale dataset, consisting of 7,320 point-wise cluster affiliations for bivariate data, which has been labeled by 384 human crowd workers. Based on this data, we were able to train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster separability. In order to train ClusterNet on human annotated data, we use a PointNet++ architecture enabling inference on point clouds directly. In this work, we provide details on how we collected our dataset, report statistics of the resulting annotations, and investigate perceptual agreement of cluster separation for real-world data. We further report the training and evaluation protocol of ClusterNet and introduce a novel metric, that measures the accuracy between a clustering technique and a group of human annotators. Finally, we compare our approach against existing state-of-the-art clustering techniques and can show, that ClusterNet is able to generalize to unseen and out of scope data.

  • 5 authors
·
Apr 27, 2023

Open-vocabulary vs. Closed-set: Best Practice for Few-shot Object Detection Considering Text Describability

Open-vocabulary object detection (OVD), detecting specific classes of objects using only their linguistic descriptions (e.g., class names) without any image samples, has garnered significant attention. However, in real-world applications, the target class concepts is often hard to describe in text and the only way to specify target objects is to provide their image examples, yet it is often challenging to obtain a good number of samples. Thus, there is a high demand from practitioners for few-shot object detection (FSOD). A natural question arises: Can the benefits of OVD extend to FSOD for object classes that are difficult to describe in text? Compared to traditional methods that learn only predefined classes (referred to in this paper as closed-set object detection, COD), can the extra cost of OVD be justified? To answer these questions, we propose a method to quantify the ``text-describability'' of object detection datasets using the zero-shot image classification accuracy with CLIP. This allows us to categorize various OD datasets with different text-describability and emprically evaluate the FSOD performance of OVD and COD methods within each category. Our findings reveal that: i) there is little difference between OVD and COD for object classes with low text-describability under equal conditions in OD pretraining; and ii) although OVD can learn from more diverse data than OD-specific data, thereby increasing the volume of training data, it can be counterproductive for classes with low-text-describability. These findings provide practitioners with valuable guidance amidst the recent advancements of OVD methods.

  • 3 authors
·
Oct 20, 2024

SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection

Confusion and forgetting of object classes have been challenges of prime interest in Few-Shot Object Detection (FSOD). To overcome these pitfalls in metric learning based FSOD techniques, we introduce a novel Submodular Mutual Information Learning (SMILe) framework which adopts combinatorial mutual information functions to enforce the creation of tighter and discriminative feature clusters in FSOD. Our proposed approach generalizes to several existing approaches in FSOD, agnostic of the backbone architecture demonstrating elevated performance gains. A paradigm shift from instance based objective functions to combinatorial objectives in SMILe naturally preserves the diversity within an object class resulting in reduced forgetting when subjected to few training examples. Furthermore, the application of mutual information between the already learnt (base) and newly added (novel) objects ensures sufficient separation between base and novel classes, minimizing the effect of class confusion. Experiments on popular FSOD benchmarks, PASCAL-VOC and MS-COCO show that our approach generalizes to State-of-the-Art (SoTA) approaches improving their novel class performance by up to 5.7% (3.3 mAP points) and 5.4% (2.6 mAP points) on the 10-shot setting of VOC (split 3) and 30-shot setting of COCO datasets respectively. Our experiments also demonstrate better retention of base class performance and up to 2x faster convergence over existing approaches agnostic of the underlying architecture.

  • 3 authors
·
Jul 2, 2024

Token Coordinated Prompt Attention is Needed for Visual Prompting

Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.

  • 4 authors
·
May 5, 2025

GRES: Generalized Referring Expression Segmentation

Referring Expression Segmentation (RES) aims to generate a segmentation mask for the object described by a given language expression. Existing classic RES datasets and methods commonly support single-target expressions only, i.e., one expression refers to one target object. Multi-target and no-target expressions are not considered. This limits the usage of RES in practice. In this paper, we introduce a new benchmark called Generalized Referring Expression Segmentation (GRES), which extends the classic RES to allow expressions to refer to an arbitrary number of target objects. Towards this, we construct the first large-scale GRES dataset called gRefCOCO that contains multi-target, no-target, and single-target expressions. GRES and gRefCOCO are designed to be well-compatible with RES, facilitating extensive experiments to study the performance gap of the existing RES methods on the GRES task. In the experimental study, we find that one of the big challenges of GRES is complex relationship modeling. Based on this, we propose a region-based GRES baseline ReLA that adaptively divides the image into regions with sub-instance clues, and explicitly models the region-region and region-language dependencies. The proposed approach ReLA achieves new state-of-the-art performance on the both newly proposed GRES and classic RES tasks. The proposed gRefCOCO dataset and method are available at https://henghuiding.github.io/GRES.

  • 3 authors
·
Jun 1, 2023

Separating common from salient patterns with Contrastive Representation Learning

Contrastive Analysis is a sub-field of Representation Learning that aims at separating common factors of variation between two datasets, a background (i.e., healthy subjects) and a target (i.e., diseased subjects), from the salient factors of variation, only present in the target dataset. Despite their relevance, current models based on Variational Auto-Encoders have shown poor performance in learning semantically-expressive representations. On the other hand, Contrastive Representation Learning has shown tremendous performance leaps in various applications (classification, clustering, etc.). In this work, we propose to leverage the ability of Contrastive Learning to learn semantically expressive representations well adapted for Contrastive Analysis. We reformulate it under the lens of the InfoMax Principle and identify two Mutual Information terms to maximize and one to minimize. We decompose the first two terms into an Alignment and a Uniformity term, as commonly done in Contrastive Learning. Then, we motivate a novel Mutual Information minimization strategy to prevent information leakage between common and salient distributions. We validate our method, called SepCLR, on three visual datasets and three medical datasets, specifically conceived to assess the pattern separation capability in Contrastive Analysis. Code available at https://github.com/neurospin-projects/2024_rlouiset_sep_clr.

  • 4 authors
·
Feb 19, 2024

CoT-Driven Framework for Short Text Classification: Enhancing and Transferring Capabilities from Large to Smaller Model

Short Text Classification (STC) is crucial for processing and understanding the brief but substantial content prevalent on contemporary digital platforms. The STC encounters difficulties in grasping the semantic and syntactic intricacies, an issue that is apparent in traditional pre-trained language models. Although Graph Convolutional Networks enhance performance by integrating external knowledge bases, these methods are limited by the quality and extent of the knowledge applied. Recently, the emergence of Large Language Models (LLMs) and Chain-of-Thought (CoT) has significantly improved the performance of complex reasoning tasks. However, some studies have highlighted the limitations of their application in fundamental NLP tasks. Consequently, this study first employs CoT to investigate and enhance the capabilities of LLMs in STC tasks. We propose the Syntactic and Semantic Enrichment CoT (SSE-CoT) method, effectively decomposing the STC tasks into four distinct steps: (i) essential concept identification, (ii) common-sense knowledge retrieval, (iii) text rewriting, and (iv) classification. Furthermore, recognizing resource constraints in sectors like finance and healthcare, we then introduce the CoT-Driven Multi-Task Learning (CDMT) framework to extend these capabilities to smaller models. This framework begins by extracting rationales from LLMs and subsequently fine-tunes smaller models to optimize their performance. Extensive experimentation across six short-text benchmarks validated the efficacy of the proposed methods. In particular, SSE-CoT achieved state-of-the-art performance with substantial improvements on all datasets, particularly on the Ohsumed and TagMyNews datasets.

  • 8 authors
·
Jan 6, 2024

Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization

Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts

  • 3 authors
·
Sep 29, 2024

TCSA-UDA: Text-Driven Cross-Semantic Alignment for Unsupervised Domain Adaptation in Medical Image Segmentation

Unsupervised domain adaptation for medical image segmentation remains a significant challenge due to substantial domain shifts across imaging modalities, such as CT and MRI. While recent vision-language representation learning methods have shown promise, their potential in UDA segmentation tasks remains underexplored. To address this gap, we propose TCSA-UDA, a Text-driven Cross-Semantic Alignment framework that leverages domain-invariant textual class descriptions to guide visual representation learning. Our approach introduces a vision-language covariance cosine loss to directly align image encoder features with inter-class textual semantic relations, encouraging semantically meaningful and modality-invariant feature representations. Additionally, we incorporate a prototype alignment module that aligns class-wise pixel-level feature distributions across domains using high-level semantic prototypes. This mitigates residual category-level discrepancies and enhances cross-modal consistency. Extensive experiments on challenging cross-modality cardiac, abdominal, and brain tumor segmentation benchmarks demonstrate that our TCSA-UDA framework significantly reduces domain shift and consistently outperforms state-of-the-art UDA methods, establishing a new paradigm for integrating language-driven semantics into domain-adaptive medical image analysis.

  • 3 authors
·
Nov 7, 2025

ElasticFace: Elastic Margin Loss for Deep Face Recognition

Learning discriminative face features plays a major role in building high-performing face recognition models. The recent state-of-the-art face recognition solutions proposed to incorporate a fixed penalty margin on commonly used classification loss function, softmax loss, in the normalized hypersphere to increase the discriminative power of face recognition models, by minimizing the intra-class variation and maximizing the inter-class variation. Marginal penalty softmax losses, such as ArcFace and CosFace, assume that the geodesic distance between and within the different identities can be equally learned using a fixed penalty margin. However, such a learning objective is not realistic for real data with inconsistent inter-and intra-class variation, which might limit the discriminative and generalizability of the face recognition model. In this paper, we relax the fixed penalty margin constrain by proposing elastic penalty margin loss (ElasticFace) that allows flexibility in the push for class separability. The main idea is to utilize random margin values drawn from a normal distribution in each training iteration. This aims at giving the decision boundary chances to extract and retract to allow space for flexible class separability learning. We demonstrate the superiority of our ElasticFace loss over ArcFace and CosFace losses, using the same geometric transformation, on a large set of mainstream benchmarks. From a wider perspective, our ElasticFace has advanced the state-of-the-art face recognition performance on seven out of nine mainstream benchmarks.

  • 4 authors
·
Sep 20, 2021

Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition

Existing long-tailed recognition methods, aiming to train class-balanced models from long-tailed data, generally assume the models would be evaluated on the uniform test class distribution. However, practical test class distributions often violate this assumption (e.g., being either long-tailed or even inversely long-tailed), which may lead existing methods to fail in real applications. In this paper, we study a more practical yet challenging task, called test-agnostic long-tailed recognition, where the training class distribution is long-tailed while the test class distribution is agnostic and not necessarily uniform. In addition to the issue of class imbalance, this task poses another challenge: the class distribution shift between the training and test data is unknown. To tackle this task, we propose a novel approach, called Self-supervised Aggregation of Diverse Experts, which consists of two strategies: (i) a new skill-diverse expert learning strategy that trains multiple experts from a single and stationary long-tailed dataset to separately handle different class distributions; (ii) a novel test-time expert aggregation strategy that leverages self-supervision to aggregate the learned multiple experts for handling unknown test class distributions. We theoretically show that our self-supervised strategy has a provable ability to simulate test-agnostic class distributions. Promising empirical results demonstrate the effectiveness of our method on both vanilla and test-agnostic long-tailed recognition. Code is available at https://github.com/Vanint/SADE-AgnosticLT.

  • 4 authors
·
Jul 20, 2021

Learning Yourself: Class-Incremental Semantic Segmentation with Language-Inspired Bootstrapped Disentanglement

Class-Incremental Semantic Segmentation (CISS) requires continuous learning of newly introduced classes while retaining knowledge of past classes. By abstracting mainstream methods into two stages (visual feature extraction and prototype-feature matching), we identify a more fundamental challenge termed catastrophic semantic entanglement. This phenomenon involves Prototype-Feature Entanglement caused by semantic misalignment during the incremental process, and Background-Increment Entanglement due to dynamic data evolution. Existing techniques, which rely on visual feature learning without sufficient cues to distinguish targets, introduce significant noise and errors. To address these issues, we introduce a Language-inspired Bootstrapped Disentanglement framework (LBD). We leverage the prior class semantics of pre-trained visual-language models (e.g., CLIP) to guide the model in autonomously disentangling features through Language-guided Prototypical Disentanglement and Manifold Mutual Background Disentanglement. The former guides the disentangling of new prototypes by treating hand-crafted text features as topological templates, while the latter employs multiple learnable prototypes and mask-pooling-based supervision for background-incremental class disentanglement. By incorporating soft prompt tuning and encoder adaptation modifications, we further bridge the capability gap of CLIP between dense and sparse tasks, achieving state-of-the-art performance on both Pascal VOC and ADE20k, particularly in multi-step scenarios.

  • 3 authors
·
Aug 30, 2025

CAFA: Class-Aware Feature Alignment for Test-Time Adaptation

Despite recent advancements in deep learning, deep neural networks continue to suffer from performance degradation when applied to new data that differs from training data. Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time. TTA can be applied to pretrained networks without modifying their training procedures, enabling them to utilize a well-formed source distribution for adaptation. One possible approach is to align the representation space of test samples to the source distribution (i.e., feature alignment). However, performing feature alignment in TTA is especially challenging in that access to labeled source data is restricted during adaptation. That is, a model does not have a chance to learn test data in a class-discriminative manner, which was feasible in other adaptation tasks (e.g., unsupervised domain adaptation) via supervised losses on the source data. Based on this observation, we propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously 1) encourages a model to learn target representations in a class-discriminative manner and 2) effectively mitigates the distribution shifts at test time. Our method does not require any hyper-parameters or additional losses, which are required in previous approaches. We conduct extensive experiments on 6 different datasets and show our proposed method consistently outperforms existing baselines.

  • 6 authors
·
May 31, 2022

Introducing Three New Benchmark Datasets for Hierarchical Text Classification

Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification.

  • 3 authors
·
Nov 28, 2024

Fast and Accurate Transferability Measurement by Evaluating Intra-class Feature Variance

Given a set of pre-trained models, how can we quickly and accurately find the most useful pre-trained model for a downstream task? Transferability measurement is to quantify how transferable is a pre-trained model learned on a source task to a target task. It is used for quickly ranking pre-trained models for a given task and thus becomes a crucial step for transfer learning. Existing methods measure transferability as the discrimination ability of a source model for a target data before transfer learning, which cannot accurately estimate the fine-tuning performance. Some of them restrict the application of transferability measurement in selecting the best supervised pre-trained models that have classifiers. It is important to have a general method for measuring transferability that can be applied in a variety of situations, such as selecting the best self-supervised pre-trained models that do not have classifiers, and selecting the best transferring layer for a target task. In this work, we propose TMI (TRANSFERABILITY MEASUREMENT WITH INTRA-CLASS FEATURE VARIANCE), a fast and accurate algorithm to measure transferability. We view transferability as the generalization of a pre-trained model on a target task by measuring intra-class feature variance. Intra-class variance evaluates the adaptability of the model to a new task, which measures how transferable the model is. Compared to previous studies that estimate how discriminative the models are, intra-class variance is more accurate than those as it does not require an optimal feature extractor and classifier. Extensive experiments on real-world datasets show that TMI outperforms competitors for selecting the top-5 best models, and exhibits consistently better correlation in 13 out of 17 cases.

  • 2 authors
·
Aug 11, 2023

CF-CAM: Cluster Filter Class Activation Mapping for Reliable Gradient-Based Interpretability

As deep learning continues to advance, the transparency of neural network decision-making remains a critical challenge, limiting trust and applicability in high-stakes domains. Class Activation Mapping (CAM) techniques have emerged as a key approach toward visualizing model decisions, yet existing methods face inherent trade-offs. Gradient-based CAM variants suffer from sensitivity to gradient perturbations due to gradient noise, leading to unstable and unreliable explanations. Conversely, gradient-free approaches mitigate gradient instability but incur significant computational overhead and inference latency. To address these limitations, we propose a Cluster Filter Class Activation Map (CF-CAM) technique, a novel framework that reintroduces gradient-based weighting while enhancing robustness against gradient noise. CF-CAM utilizes hierarchical importance weighting strategy to balance discriminative feature preservation and noise elimination. A density-aware channel clustering method via Density-Based Spatial Clustering of Applications with Noise (DBSCAN) groups semantically relevant feature channels and discard noise-prone activations. Additionally, cluster-conditioned gradient filtering leverages Gaussian filters to refine gradient signals, preserving edge-aware localization while suppressing noise impact. Experiment results demonstrate that CF-CAM achieves superior interpretability performance while enhancing computational efficiency, outperforming state-of-the-art CAM methods in faithfulness and robustness. By effectively mitigating gradient instability without excessive computational cost, CF-CAM provides a competitive solution for enhancing the interpretability of deep neural networks in critical applications such as autonomous driving and medical diagnosis.

  • 3 authors
·
Mar 31, 2025

Optimizing Calibration by Gaining Aware of Prediction Correctness

Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.

  • 5 authors
·
Apr 19, 2024

UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

The reference-based object segmentation tasks, namely referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS), aim to segment a specific object by utilizing either language or annotated masks as references. Despite significant progress in each respective field, current methods are task-specifically designed and developed in different directions, which hinders the activation of multi-task capabilities for these tasks. In this work, we end the current fragmented situation and propose UniRef++ to unify the four reference-based object segmentation tasks with a single architecture. At the heart of our approach is the proposed UniFusion module which performs multiway-fusion for handling different tasks with respect to their specified references. And a unified Transformer architecture is then adopted for achieving instance-level segmentation. With the unified designs, UniRef++ can be jointly trained on a broad range of benchmarks and can flexibly complete multiple tasks at run-time by specifying the corresponding references. We evaluate our unified models on various benchmarks. Extensive experimental results indicate that our proposed UniRef++ achieves state-of-the-art performance on RIS and RVOS, and performs competitively on FSS and VOS with a parameter-shared network. Moreover, we showcase that the proposed UniFusion module could be easily incorporated into the current advanced foundation model SAM and obtain satisfactory results with parameter-efficient finetuning. Codes and models are available at https://github.com/FoundationVision/UniRef.

  • 6 authors
·
Dec 25, 2023 1