new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 30

AutoPK: Leveraging LLMs and a Hybrid Similarity Metric for Advanced Retrieval of Pharmacokinetic Data from Complex Tables and Documents

Pharmacokinetics (PK) plays a critical role in drug development and regulatory decision-making for human and veterinary medicine, directly affecting public health through drug safety and efficacy assessments. However, PK data are often embedded in complex, heterogeneous tables with variable structures and inconsistent terminologies, posing significant challenges for automated PK data retrieval and standardization. AutoPK, a novel two-stage framework for accurate and scalable extraction of PK data from complex scientific tables. In the first stage, AutoPK identifies and extracts PK parameter variants using large language models (LLMs), a hybrid similarity metric, and LLM-based validation. The second stage filters relevant rows, converts the table into a key-value text format, and uses an LLM to reconstruct a standardized table. Evaluated on a real-world dataset of 605 PK tables, including captions and footnotes, AutoPK shows significant improvements in precision and recall over direct LLM baselines. For instance, AutoPK with LLaMA 3.1-70B achieved an F1-score of 0.92 on half-life and 0.91 on clearance parameters, outperforming direct use of LLaMA 3.1-70B by margins of 0.10 and 0.21, respectively. Smaller models such as Gemma 3-27B and Phi 3-12B with AutoPK achieved 2-7 fold F1 gains over their direct use, with Gemma's hallucination rates reduced from 60-95% down to 8-14%. Notably, AutoPK enabled open-source models like Gemma 3-27B to outperform commercial systems such as GPT-4o Mini on several PK parameters. AutoPK enables scalable and high-confidence PK data extraction, making it well-suited for critical applications in veterinary pharmacology, drug safety monitoring, and public health decision-making, while addressing heterogeneous table structures and terminology and demonstrating generalizability across key PK parameters. Code and data: https://github.com/hosseinsholehrasa/AutoPK

  • 6 authors
·
Sep 26, 2025

AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights

Normalization techniques are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters. In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in those benchmarks. Source code is available at https://github.com/clovaai/AdamP.

naver-ai NAVER AI Lab
·
Jun 15, 2020

From Logistic Regression to the Perceptron Algorithm: Exploring Gradient Descent with Large Step Sizes

We focus on the classification problem with a separable dataset, one of the most important and classical problems from machine learning. The standard approach to this task is logistic regression with gradient descent (LR+GD). Recent studies have observed that LR+GD can find a solution with arbitrarily large step sizes, defying conventional optimization theory. Our work investigates this phenomenon and makes three interconnected key observations about LR+GD with large step sizes. First, we find a remarkably simple explanation of why LR+GD with large step sizes solves the classification problem: LR+GD reduces to a batch version of the celebrated perceptron algorithm when the step size gamma to infty. Second, we observe that larger step sizes lead LR+GD to higher logistic losses when it tends to the perceptron algorithm, but larger step sizes also lead to faster convergence to a solution for the classification problem, meaning that logistic loss is an unreliable metric of the proximity to a solution. Surprisingly, high loss values can actually indicate faster convergence. Third, since the convergence rate in terms of loss function values of LR+GD is unreliable, we examine the iteration complexity required by LR+GD with large step sizes to solve the classification problem and prove that this complexity is suboptimal. To address this, we propose a new method, Normalized LR+GD - based on the connection between LR+GD and the perceptron algorithm - with much better theoretical guarantees.

  • 1 authors
·
Dec 11, 2024

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

  • 2 authors
·
Feb 18, 2025