new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Hierarchical Contextual Grounding LVLM: Enhancing Fine-Grained Visual-Language Understanding with Robust Grounding

Large Language Models (LLMs) and Vision-Language Large Models (LVLMs) have achieved remarkable progress in natural language processing and multimodal understanding. Despite their impressive generalization capabilities, current LVLMs often exhibit insufficient robustness, proneness to hallucination, and reasoning errors in complex real-world scenarios, particularly when precise image region localization and fine-grained visual reasoning are required. To address these limitations, we propose the Hierarchical Contextual Grounding LVLM (HCG-LVLM), a novel architecture that mimics human coarse-to-fine cognitive processing. HCG-LVLM employs a two-layered approach: a Global Contextual Perception layer for initial broad understanding and a Fine-grained Local Grounding layer. The latter incorporates a Local Detail Enhancement Module to extract high-resolution features and a Semantic Consistency Validator to ensure accurate, hallucination-free visual-language alignment. Through an adaptive fusion mechanism, information from both layers is integrated for robust and precise outputs. Extensive experiments on challenging datasets, including GQA, A-OKVQA for fine-grained VQA, and RefCOCO/+/g for Referring Expression Comprehension, demonstrate that HCG-LVLM consistently outperforms state-of-the-art models such as Flamingo, BLIP-2, and MiniGPT-4. Our model achieves superior accuracy and significantly reduces hallucination, validating the effectiveness of its hierarchical design in enhancing fine-grained visual-language understanding and precise grounding capabilities.

  • 5 authors
·
Aug 23

STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution

Image diffusion models have been adapted for real-world video super-resolution to tackle over-smoothing issues in GAN-based methods. However, these models struggle to maintain temporal consistency, as they are trained on static images, limiting their ability to capture temporal dynamics effectively. Integrating text-to-video (T2V) models into video super-resolution for improved temporal modeling is straightforward. However, two key challenges remain: artifacts introduced by complex degradations in real-world scenarios, and compromised fidelity due to the strong generative capacity of powerful T2V models (e.g., CogVideoX-5B). To enhance the spatio-temporal quality of restored videos, we introduce~\name (Spatial-Temporal Augmentation with T2V models for Real-world video super-resolution), a novel approach that leverages T2V models for real-world video super-resolution, achieving realistic spatial details and robust temporal consistency. Specifically, we introduce a Local Information Enhancement Module (LIEM) before the global attention block to enrich local details and mitigate degradation artifacts. Moreover, we propose a Dynamic Frequency (DF) Loss to reinforce fidelity, guiding the model to focus on different frequency components across diffusion steps. Extensive experiments demonstrate~\name~outperforms state-of-the-art methods on both synthetic and real-world datasets.

INF-LLaVA: Dual-perspective Perception for High-Resolution Multimodal Large Language Model

With advancements in data availability and computing resources, Multimodal Large Language Models (MLLMs) have showcased capabilities across various fields. However, the quadratic complexity of the vision encoder in MLLMs constrains the resolution of input images. Most current approaches mitigate this issue by cropping high-resolution images into smaller sub-images, which are then processed independently by the vision encoder. Despite capturing sufficient local details, these sub-images lack global context and fail to interact with one another. To address this limitation, we propose a novel MLLM, INF-LLaVA, designed for effective high-resolution image perception. INF-LLaVA incorporates two innovative components. First, we introduce a Dual-perspective Cropping Module (DCM), which ensures that each sub-image contains continuous details from a local perspective and comprehensive information from a global perspective. Second, we introduce Dual-perspective Enhancement Module (DEM) to enable the mutual enhancement of global and local features, allowing INF-LLaVA to effectively process high-resolution images by simultaneously capturing detailed local information and comprehensive global context. Extensive ablation studies validate the effectiveness of these components, and experiments on a diverse set of benchmarks demonstrate that INF-LLaVA outperforms existing MLLMs. Code and pretrained model are available at https://github.com/WeihuangLin/INF-LLaVA.

  • 7 authors
·
Jul 23, 2024 3

CoSwin: Convolution Enhanced Hierarchical Shifted Window Attention For Small-Scale Vision

Vision Transformers (ViTs) have achieved impressive results in computer vision by leveraging self-attention to model long-range dependencies. However, their emphasis on global context often comes at the expense of local feature extraction in small datasets, particularly due to the lack of key inductive biases such as locality and translation equivariance. To mitigate this, we propose CoSwin, a novel feature-fusion architecture that augments the hierarchical shifted window attention with localized convolutional feature learning. Specifically, CoSwin integrates a learnable local feature enhancement module into each attention block, enabling the model to simultaneously capture fine-grained spatial details and global semantic structure. We evaluate CoSwin on multiple image classification benchmarks including CIFAR-10, CIFAR-100, MNIST, SVHN, and Tiny ImageNet. Our experimental results show consistent performance gains over state-of-the-art convolutional and transformer-based models. Notably, CoSwin achieves improvements of 2.17% on CIFAR-10, 4.92% on CIFAR-100, 0.10% on MNIST, 0.26% on SVHN, and 4.47% on Tiny ImageNet over the baseline Swin Transformer. These improvements underscore the effectiveness of local-global feature fusion in enhancing the generalization and robustness of transformers for small-scale vision. Code and pretrained weights available at https://github.com/puskal-khadka/coswin

  • 4 authors
·
Sep 10