Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRisk-Averse Reinforcement Learning with Itakura-Saito Loss
Risk-averse reinforcement learning finds application in various high-stakes fields. Unlike classical reinforcement learning, which aims to maximize expected returns, risk-averse agents choose policies that minimize risk, occasionally sacrificing expected value. These preferences can be framed through utility theory. We focus on the specific case of the exponential utility function, where we can derive the Bellman equations and employ various reinforcement learning algorithms with few modifications. However, these methods suffer from numerical instability due to the need for exponent computation throughout the process. To address this, we introduce a numerically stable and mathematically sound loss function based on the Itakura-Saito divergence for learning state-value and action-value functions. We evaluate our proposed loss function against established alternatives, both theoretically and empirically. In the experimental section, we explore multiple financial scenarios, some with known analytical solutions, and show that our loss function outperforms the alternatives.
LM Transparency Tool: Interactive Tool for Analyzing Transformer Language Models
We present the LM Transparency Tool (LM-TT), an open-source interactive toolkit for analyzing the internal workings of Transformer-based language models. Differently from previously existing tools that focus on isolated parts of the decision-making process, our framework is designed to make the entire prediction process transparent, and allows tracing back model behavior from the top-layer representation to very fine-grained parts of the model. Specifically, it (1) shows the important part of the whole input-to-output information flow, (2) allows attributing any changes done by a model block to individual attention heads and feed-forward neurons, (3) allows interpreting the functions of those heads or neurons. A crucial part of this pipeline is showing the importance of specific model components at each step. As a result, we are able to look at the roles of model components only in cases where they are important for a prediction. Since knowing which components should be inspected is key for analyzing large models where the number of these components is extremely high, we believe our tool will greatly support the interpretability community both in research settings and in practical applications.
Distributional Preference Alignment of LLMs via Optimal Transport
Current LLM alignment techniques use pairwise human preferences at a sample level, and as such, they do not imply an alignment on the distributional level. We propose in this paper Alignment via Optimal Transport (AOT), a novel method for distributional preference alignment of LLMs. AOT aligns LLMs on unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. We introduce a convex relaxation of this first-order stochastic dominance and cast it as an optimal transport problem with a smooth and convex cost. Thanks to the one-dimensional nature of the resulting optimal transport problem and the convexity of the cost, it has a closed-form solution via sorting on empirical measures. We fine-tune LLMs with this AOT objective, which enables alignment by penalizing the violation of the stochastic dominance of the reward distribution of the positive samples on the reward distribution of the negative samples. We analyze the sample complexity of AOT by considering the dual of the OT problem and show that it converges at the parametric rate. Empirically, we show on a diverse set of alignment datasets and LLMs that AOT leads to state-of-the-art models in the 7B family of models when evaluated with Open LLM Benchmarks and AlpacaEval.
Classification of BCI-EEG based on augmented covariance matrix
Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.
Reprogramming Pretrained Language Models for Antibody Sequence Infilling
Antibodies comprise the most versatile class of binding molecules, with numerous applications in biomedicine. Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency. Unique to antibodies, designing the complementarity-determining region (CDR), which determines the antigen binding affinity and specificity, creates its own unique challenges. Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance, particularly lacking diversity in the generated sequences. In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data - where it may be difficult to train a high-performing model from scratch or effectively fine-tune an existing pre-trained model on the specific task. Specifically, we introduce ReprogBert in which a pretrained English language model is repurposed for protein sequence infilling - thus considers cross-language adaptation using less data. Results on antibody design benchmarks show that our model on low-resourced antibody sequence dataset provides highly diverse CDR sequences, up to more than a two-fold increase of diversity over the baselines, without losing structural integrity and naturalness. The generated sequences also demonstrate enhanced antigen binding specificity and virus neutralization ability. Code is available at https://github.com/IBM/ReprogBERT
Pseudo-online framework for BCI evaluation: A MOABB perspective
Objective: BCI (Brain-Computer Interface) technology operates in three modes: online, offline, and pseudo-online. In the online mode, real-time EEG data is constantly analyzed. In offline mode, the signal is acquired and processed afterwards. The pseudo-online mode processes collected data as if they were received in real-time. The main difference is that the offline mode often analyzes the whole data, while the online and pseudo-online modes only analyze data in short time windows. Offline analysis is usually done with asynchronous BCIs, which restricts analysis to predefined time windows. Asynchronous BCI, compatible with online and pseudo-online modes, allows flexible mental activity duration. Offline processing tends to be more accurate, while online analysis is better for therapeutic applications. Pseudo-online implementation approximates online processing without real-time constraints. Many BCI studies being offline introduce biases compared to real-life scenarios, impacting classification algorithm performance. Approach: The objective of this research paper is therefore to extend the current MOABB framework, operating in offline mode, so as to allow a comparison of different algorithms in a pseudo-online setting with the use of a technology based on overlapping sliding windows. To do this will require the introduction of a idle state event in the dataset that takes into account all different possibilities that are not task thinking. To validate the performance of the algorithms we will use the normalized Matthews Correlation Coefficient (nMCC) and the Information Transfer Rate (ITR). Main results: We analyzed the state-of-the-art algorithms of the last 15 years over several Motor Imagery (MI) datasets composed by several subjects, showing the differences between the two approaches from a statistical point of view. Significance: The ability to analyze the performance of different algorithms in offline and pseudo-online modes will allow the BCI community to obtain more accurate and comprehensive reports regarding the performance of classification algorithms.
Beyond Data Filtering: Knowledge Localization for Capability Removal in LLMs
Large Language Models increasingly possess capabilities that carry dual-use risks. While data filtering has emerged as a pretraining-time mitigation, it faces significant challenges: labeling whether data is harmful is expensive at scale, and given improving sample efficiency with larger models, even small amounts of mislabeled content could give rise to dangerous capabilities. To address risks associated with mislabeled harmful content, prior work proposed Gradient Routing (Cloud et al., 2024) -- a technique that localizes target knowledge into a dedicated subset of model parameters so they can later be removed. We explore an improved variant of Gradient Routing, which we call Selective GradienT Masking (SGTM), with particular focus on evaluating its robustness to label noise. SGTM zero-masks selected gradients such that target domain examples only update their dedicated parameters. We test SGTM's effectiveness in two applications: removing knowledge of one language from a model trained on a bilingual synthetic dataset, and removing biology knowledge from a model trained on English Wikipedia. In both cases SGTM provides better retain/forget trade-off in the presence of labeling errors compared to both data filtering and a previously proposed instantiation of Gradient Routing. Unlike shallow unlearning approaches that can be quickly undone through fine-tuning, SGTM exhibits strong robustness to adversarial fine-tuning, requiring seven times more fine-tuning steps to reach baseline performance on the forget set compared to a finetuning-based unlearning method (RMU). Our results suggest SGTM provides a promising pretraining-time complement to existing safety mitigations, particularly in settings where label noise is unavoidable.
EvoGraph: Hybrid Directed Graph Evolution toward Software 3.0
We introduce **EvoGraph**, a framework that enables software systems to evolve their own source code, build pipelines, documentation, and tickets. EvoGraph represents every artefact in a typed directed graph, applies learned mutation operators driven by specialized small language models (SLMs), and selects survivors with a multi-objective fitness. On three benchmarks, EvoGraph fixes 83% of known security vulnerabilities, translates COBOL to Java with 93% functional equivalence (test verified), and maintains documentation freshness within two minutes. Experiments show a 40% latency reduction and a sevenfold drop in feature lead time compared with strong baselines. We extend our approach to **evoGraph**, leveraging language-specific SLMs for modernizing .NET, Lisp, CGI, ColdFusion, legacy Python, and C codebases, achieving 82-96% semantic equivalence across languages while reducing computational costs by 90% compared to large language models. EvoGraph's design responds to empirical failure modes in legacy modernization, such as implicit contracts, performance preservation, and integration evolution. Our results suggest a practical path toward Software 3.0, where systems adapt continuously yet remain under measurable control.
TAGC: Optimizing Gradient Communication in Distributed Transformer Training
The increasing complexity of large language models (LLMs) necessitates efficient training strategies to mitigate the high computational costs associated with distributed training. A significant bottleneck in this process is gradient synchronization across multiple GPUs, particularly in the zero-redundancy parallelism mode. In this paper, we introduce Transformer-Aware Gradient Compression (TAGC), an optimized gradient compression algorithm designed specifically for transformer-based models. TAGC extends the lossless homomorphic compression method by adapting it for sharded models and incorporating transformer-specific optimizations, such as layer-selective compression and dynamic sparsification. Our experimental results demonstrate that TAGC accelerates training by up to 15% compared to the standard Fully Sharded Data Parallel (FSDP) approach, with minimal impact on model quality. We integrate TAGC into the PyTorch FSDP framework, the implementation is publicly available at https://github.com/ipolyakov/TAGC.
On the local analyticity for the Euler equations
In this paper, we study the existence and uniqueness of solutions to the Euler equations with initial conditions that exhibit analytic regularity near the boundary and Sobolev regularity away from it. A key contribution of this work is the introduction of the diamond-analyticity framework, which captures the spatial decay of the analyticity radius in a structured manner, improving upon uniform analyticity approaches. We employ the Leray projection and a nonstandard mollification technique to demonstrate that the quotient between the imaginary and real parts of the analyticity radius remains unrestricted, thus extending the analyticity persistence results beyond traditional constraints. Our methodology combines analytic-Sobolev estimates with an iterative scheme which is nonstandard in the Cauchy-Kowalevskaya framework, ensuring rigorous control over the evolution of the solution. These results contribute to a deeper understanding of the interplay between analyticity and boundary effects in fluid equations. They might have implications for the study of the inviscid limit of the Navier-Stokes equations and the role of complex singularities in fluid dynamics.
Physics-Based Forecasting of Tomorrow's Solar Wind at 1 AU
A faster than real time forecast system for solar wind and interplanetary magnetic field transients that is driven by hourly updated solar magnetograms is proposed to provide a continuous nowcast of the solar corona (<0.1AU) and 24-hours forecast of the solar wind at 1 AU by solving a full 3-D MHD model. This new model has been inspired by the concept of relativity of simultaneity used in the theory of special relativity. It is based on time transformation between two coordinate systems: the solar rest frame and a boosted system in which the current observations of the solar magnetic field and tomorrow's measurement of the solar wind at 1 AU are simultaneous. In this paper we derive the modified governing equations for both hydrodynamics (HD) and magnetohydrodynamics (MHD) and present a new numerical algorithm that only modifies the conserved quantities but preserves the original HD/MHD numerical flux. The proposed method enables an efficient numerical implementation, and thus a significantly longer forecast time than the traditional method.
Equilibrium of Charges and Differential Equations Solved by Polynomials II
We continue study of equilibrium of two species of 2d coulomb charges (or point vortices in 2d ideal fluid) started in Lv. Although for two species of vortices with circulation ratio -1 the relationship between the equilibria and the factorization/Darboux transformation of the Schrodinger operator was established a long ago, the question about similar relationship for the ratio -2 remained unanswered. Here we present the answer.
Long Input Benchmark for Russian Analysis
Recent advancements in Natural Language Processing (NLP) have fostered the development of Large Language Models (LLMs) that can solve an immense variety of tasks. One of the key aspects of their application is their ability to work with long text documents and to process long sequences of tokens. This has created a demand for proper evaluation of long-context understanding. To address this need for the Russian language, we propose LIBRA (Long Input Benchmark for Russian Analysis), which comprises 21 adapted datasets to study the LLM's abilities to understand long texts thoroughly. The tests are divided into four complexity groups and allow the evaluation of models across various context lengths ranging from 4k up to 128k tokens. We provide the open-source datasets, codebase, and public leaderboard for LIBRA to guide forthcoming research.
Moisesdb: A dataset for source separation beyond 4-stems
In this paper, we introduce the MoisesDB dataset for musical source separation. It consists of 240 tracks from 45 artists, covering twelve musical genres. For each song, we provide its individual audio sources, organized in a two-level hierarchical taxonomy of stems. This will facilitate building and evaluating fine-grained source separation systems that go beyond the limitation of using four stems (drums, bass, other, and vocals) due to lack of data. To facilitate the adoption of this dataset, we publish an easy-to-use Python library to download, process and use MoisesDB. Alongside a thorough documentation and analysis of the dataset contents, this work provides baseline results for open-source separation models for varying separation granularities (four, five, and six stems), and discuss their results.
A Theory on Adam Instability in Large-Scale Machine Learning
We present a theory for the previously unexplained divergent behavior noticed in the training of large language models. We argue that the phenomenon is an artifact of the dominant optimization algorithm used for training, called Adam. We observe that Adam can enter a state in which the parameter update vector has a relatively large norm and is essentially uncorrelated with the direction of descent on the training loss landscape, leading to divergence. This artifact is more likely to be observed in the training of a deep model with a large batch size, which is the typical setting of large-scale language model training. To argue the theory, we present observations from the training runs of the language models of different scales: 7 billion, 30 billion, 65 billion, and 546 billion parameters.
A comparative evaluation of image-to-image translation methods for stain transfer in histopathology
Image-to-image translation (I2I) methods allow the generation of artificial images that share the content of the original image but have a different style. With the advances in Generative Adversarial Networks (GANs)-based methods, I2I methods enabled the generation of artificial images that are indistinguishable from natural images. Recently, I2I methods were also employed in histopathology for generating artificial images of in silico stained tissues from a different type of staining. We refer to this process as stain transfer. The number of I2I variants is constantly increasing, which makes a well justified choice of the most suitable I2I methods for stain transfer challenging. In our work, we compare twelve stain transfer approaches, three of which are based on traditional and nine on GAN-based image processing methods. The analysis relies on complementary quantitative measures for the quality of image translation, the assessment of the suitability for deep learning-based tissue grading, and the visual evaluation by pathologists. Our study highlights the strengths and weaknesses of the stain transfer approaches, thereby allowing a rational choice of the underlying I2I algorithms. Code, data, and trained models for stain transfer between H&E and Masson's Trichrome staining will be made available online.
Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation
Domain adaptation has recently become a key problem in dialogue systems research. Deep learning, while being the preferred technique for modeling such systems, works best given massive training data. However, in the real-world scenario, such resources aren't available for every new domain, so the ability to train with a few dialogue examples can be considered essential. Pre-training on large data sources and adapting to the target data has become the standard method for few-shot problems within the deep learning framework. In this paper, we present the winning entry at the fast domain adaptation task of DSTC8, a hybrid generative-retrieval model based on GPT-2 fine-tuned to the multi-domain MetaLWOz dataset. Robust and diverse in response generation, our model uses retrieval logic as a fallback, being SoTA on MetaLWOz in human evaluation (>4% improvement over the 2nd place system) and attaining competitive generalization performance in adaptation to the unseen MultiWOZ dataset.
DIODE: A Dense Indoor and Outdoor DEpth Dataset
We introduce DIODE, a dataset that contains thousands of diverse high resolution color images with accurate, dense, long-range depth measurements. DIODE (Dense Indoor/Outdoor DEpth) is the first public dataset to include RGBD images of indoor and outdoor scenes obtained with one sensor suite. This is in contrast to existing datasets that focus on just one domain/scene type and employ different sensors, making generalization across domains difficult. The dataset is available for download at http://diode-dataset.org
Structured World Representations in Maze-Solving Transformers
Transformer models underpin many recent advances in practical machine learning applications, yet understanding their internal behavior continues to elude researchers. Given the size and complexity of these models, forming a comprehensive picture of their inner workings remains a significant challenge. To this end, we set out to understand small transformer models in a more tractable setting: that of solving mazes. In this work, we focus on the abstractions formed by these models and find evidence for the consistent emergence of structured internal representations of maze topology and valid paths. We demonstrate this by showing that the residual stream of only a single token can be linearly decoded to faithfully reconstruct the entire maze. We also find that the learned embeddings of individual tokens have spatial structure. Furthermore, we take steps towards deciphering the circuity of path-following by identifying attention heads (dubbed adjacency heads), which are implicated in finding valid subsequent tokens.
A Configurable Library for Generating and Manipulating Maze Datasets
Understanding how machine learning models respond to distributional shifts is a key research challenge. Mazes serve as an excellent testbed due to varied generation algorithms offering a nuanced platform to simulate both subtle and pronounced distributional shifts. To enable systematic investigations of model behavior on out-of-distribution data, we present maze-dataset, a comprehensive library for generating, processing, and visualizing datasets consisting of maze-solving tasks. With this library, researchers can easily create datasets, having extensive control over the generation algorithm used, the parameters fed to the algorithm of choice, and the filters that generated mazes must satisfy. Furthermore, it supports multiple output formats, including rasterized and text-based, catering to convolutional neural networks and autoregressive transformer models. These formats, along with tools for visualizing and converting between them, ensure versatility and adaptability in research applications.
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
TofuEval: Evaluating Hallucinations of LLMs on Topic-Focused Dialogue Summarization
Single document news summarization has seen substantial progress on faithfulness in recent years, driven by research on the evaluation of factual consistency, or hallucinations. We ask whether these advances carry over to other text summarization domains. We propose a new evaluation benchmark on topic-focused dialogue summarization, generated by LLMs of varying sizes. We provide binary sentence-level human annotations of the factual consistency of these summaries along with detailed explanations of factually inconsistent sentences. Our analysis shows that existing LLMs hallucinate significant amounts of factual errors in the dialogue domain, regardless of the model's size. On the other hand, when LLMs, including GPT-4, serve as binary factual evaluators, they perform poorly and can be outperformed by prevailing state-of-the-art specialized factuality evaluation metrics. Finally, we conducted an analysis of hallucination types with a curated error taxonomy. We find that there are diverse errors and error distributions in model-generated summaries and that non-LLM based metrics can capture all error types better than LLM-based evaluators.
FastDraft: How to Train Your Draft
Speculative Decoding has gained popularity as an effective technique for accelerating the auto-regressive inference process of Large Language Models (LLMs). However, Speculative Decoding entirely relies on the availability of efficient draft models, which are often lacking for many existing language models due to a stringent constraint of vocabulary incompatibility. In this work we introduce FastDraft, a novel and efficient approach for pre-training and aligning a draft model to any large language model by incorporating efficient pre-training, followed by fine-tuning over synthetic datasets generated by the target model. We demonstrate FastDraft by training two highly parameter efficient drafts for the popular Phi-3-mini and Llama-3.1-8B models. Using FastDraft, we were able to produce a draft with approximately 10 billion tokens on a single server with 8 Intel^circledR Gaudi^circledR 2 accelerators in under 24 hours. Our results show that the draft model achieves impressive results in key metrics of acceptance rate, block efficiency and up to 3x memory bound speed up when evaluated on code completion and up to 2x in summarization, text completion and instruction tasks. We validate our theoretical findings through benchmarking on the latest Intel^circledR Core^{tiny TM} Ultra, achieving a wall-clock time speedup of up to 2x, indicating a significant reduction in runtime. Due to its high quality, FastDraft unlocks large language models inference on AI-PC and other edge-devices.
The Complexity Trap: Simple Observation Masking Is as Efficient as LLM Summarization for Agent Context Management
Large Language Model (LLM)-based agents solve complex tasks through iterative reasoning, exploration, and tool-use, a process that can result in long, expensive context histories. While state-of-the-art Software Engineering ( SE) agents like OpenHands or Cursor use LLM-based summarization to tackle this issue, it is unclear whether the increased complexity offers tangible performance benefits compared to simply omitting older observations. We present a systematic comparison of these strategies within SWE-agent on SWE-bench Verified across five diverse model configurations. We find that a simple observation-masking strategy halves cost relative to a raw agent while matching, and sometimes slightly exceeding, the solve rate of LLM summarization. For example, with Qwen3-Coder 480B, masking improves solve rate from 53.8% (raw agent) to 54.8%, while remaining competitive with summarization at a lower cost. These results suggest that, at least within SWE-agent on SWE-bench Verified, the most effective and efficient context management can be the simplest. We release code and data for reproducibility
EBES: Easy Benchmarking for Event Sequences
Event sequences, characterized by irregular sampling intervals and a mix of categorical and numerical features, are common data structures in various real-world domains such as healthcare, finance, and user interaction logs. Despite advances in temporal data modeling techniques, there is no standardized benchmarks for evaluating their performance on event sequences. This complicates result comparison across different papers due to varying evaluation protocols, potentially misleading progress in this field. We introduce EBES, a comprehensive benchmarking tool with standardized evaluation scenarios and protocols, focusing on regression and classification problems with sequence-level targets. Our library simplifies benchmarking, dataset addition, and method integration through a unified interface. It includes a novel synthetic dataset and provides preprocessed real-world datasets, including the largest publicly available banking dataset. Our results provide an in-depth analysis of datasets, identifying some as unsuitable for model comparison. We investigate the importance of modeling temporal and sequential components, as well as the robustness and scaling properties of the models. These findings highlight potential directions for future research. Our benchmark aim is to facilitate reproducible research, expediting progress and increasing real-world impacts.
Linearizing Large Language Models
Linear transformers have emerged as a subquadratic-time alternative to softmax attention and have garnered significant interest due to their fixed-size recurrent state that lowers inference cost. However, their original formulation suffers from poor scaling and underperforms compute-matched transformers. Recent linear models such as RWKV and Mamba have attempted to address these shortcomings by proposing novel time-mixing and gating architectures, but pre-training large language models requires significant data and compute investments. Thus, the search for subquadratic architectures is limited by the availability of compute and quality pre-training datasets. As a cost-effective alternative to pre-training linear transformers, we propose Scalable UPtraining for Recurrent Attention (SUPRA). We present a method to uptrain existing large pre-trained transformers into Recurrent Neural Networks (RNNs) with a modest compute budget. This allows us to leverage the strong pre-training data and performance of existing transformer LLMs, while requiring 5% of the training cost. We find that our linearization technique leads to competitive performance on standard benchmarks, but we identify persistent in-context learning and long-context modeling shortfalls for even the largest linear models. Our code and models can be found at https://github.com/TRI-ML/linear_open_lm.
Safe Reinforcement Learning in a Simulated Robotic Arm
Reinforcement learning (RL) agents need to explore their environments in order to learn optimal policies. In many environments and tasks, safety is of critical importance. The widespread use of simulators offers a number of advantages, including safe exploration which will be inevitable in cases when RL systems need to be trained directly in the physical environment (e.g. in human-robot interaction). The popular Safety Gym library offers three mobile agent types that can learn goal-directed tasks while considering various safety constraints. In this paper, we extend the applicability of safe RL algorithms by creating a customized environment with Panda robotic arm where Safety Gym algorithms can be tested. We performed pilot experiments with the popular PPO algorithm comparing the baseline with the constrained version and show that the constrained version is able to learn the equally good policy while better complying with safety constraints and taking longer training time as expected.
Copyright Traps for Large Language Models
Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being very actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize a lot, we hypothesize--and later confirm--that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design an experimental setup, randomly inserting traps into original content (books) and train a 1.3B LLM. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be reliably detected (AUC=0.75) and used as copyright traps. We further improve these results by studying how the number of times a sequence is seen improves detectability, how sequences with higher perplexity tend to be memorized more, and how taking context into account further improves detectability.
DiGress: Discrete Denoising diffusion for graph generation
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or removing edges and changing the categories. A graph transformer network is trained to revert this process, simplifying the problem of distribution learning over graphs into a sequence of node and edge classification tasks. We further improve sample quality by introducing a Markovian noise model that preserves the marginal distribution of node and edge types during diffusion, and by incorporating auxiliary graph-theoretic features. A procedure for conditioning the generation on graph-level features is also proposed. DiGress achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement on a planar graph dataset. It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules without the use of molecule-specific representations.
Integrating Sequential and Relational Modeling for User Events: Datasets and Prediction Tasks
User event modeling plays a central role in many machine learning applications, with use cases spanning e-commerce, social media, finance, cybersecurity, and other domains. User events can be broadly categorized into personal events, which involve individual actions, and relational events, which involve interactions between two users. These two types of events are typically modeled separately, using sequence-based methods for personal events and graph-based methods for relational events. Despite the need to capture both event types in real-world systems, prior work has rarely considered them together. This is often due to the convenient simplification that user behavior can be adequately represented by a single formalization, either as a sequence or a graph. To address this gap, there is a need for public datasets and prediction tasks that explicitly incorporate both personal and relational events. In this work, we introduce a collection of such datasets, propose a unified formalization, and empirically show that models benefit from incorporating both event types. Our results also indicate that current methods leave a notable room for improvements. We release these resources to support further research in unified user event modeling and encourage progress in this direction.
Towards a Universal Vibration Analysis Dataset: A Framework for Transfer Learning in Predictive Maintenance and Structural Health Monitoring
ImageNet has become a reputable resource for transfer learning, allowing the development of efficient ML models with reduced training time and data requirements. However, vibration analysis in predictive maintenance, structural health monitoring, and fault diagnosis, lacks a comparable large-scale, annotated dataset to facilitate similar advancements. To address this, a dataset framework is proposed that begins with bearing vibration data as an initial step towards creating a universal dataset for vibration-based spectrogram analysis for all machinery. The initial framework includes a collection of bearing vibration signals from various publicly available datasets. To demonstrate the advantages of this framework, experiments were conducted using a deep learning architecture, showing improvements in model performance when pre-trained on bearing vibration data and fine-tuned on a smaller, domain-specific dataset. These findings highlight the potential to parallel the success of ImageNet in visual computing but for vibration analysis. For future work, this research will include a broader range of vibration signals from multiple types of machinery, emphasizing spectrogram-based representations of the data. Each sample will be labeled according to machinery type, operational status, and the presence or type of faults, ensuring its utility for supervised and unsupervised learning tasks. Additionally, a framework for data preprocessing, feature extraction, and model training specific to vibration data will be developed. This framework will standardize methodologies across the research community, allowing for collaboration and accelerating progress in predictive maintenance, structural health monitoring, and related fields. By mirroring the success of ImageNet in visual computing, this dataset has the potential to improve the development of intelligent systems in industrial applications.
REAL: Response Embedding-based Alignment for LLMs
Aligning large language models (LLMs) to human preferences is a crucial step in building helpful and safe AI tools, which usually involve training on supervised datasets. Popular algorithms such as Direct Preference Optimization rely on pairs of AI-generated responses ranked according to human feedback. The labeling process is the most labor-intensive and costly part of the alignment pipeline, and improving its efficiency would have a meaningful impact on AI development. We propose a strategy for sampling a high-quality training dataset that focuses on acquiring the most informative response pairs for labeling out of a set of AI-generated responses. Experimental results on synthetic HH-RLHF benchmarks indicate that choosing dissimilar response pairs enhances the direct alignment of LLMs while reducing inherited labeling errors. We also applied our method to the real-world dataset SHP2, selecting optimal pairs from multiple responses. The model aligned on dissimilar response pairs obtained the best win rate on the dialogue task. Our findings suggest that focusing on less similar pairs can improve the efficiency of LLM alignment, saving up to 65% of annotators' work.
MDS-ViTNet: Improving saliency prediction for Eye-Tracking with Vision Transformer
In this paper, we present a novel methodology we call MDS-ViTNet (Multi Decoder Saliency by Vision Transformer Network) for enhancing visual saliency prediction or eye-tracking. This approach holds significant potential for diverse fields, including marketing, medicine, robotics, and retail. We propose a network architecture that leverages the Vision Transformer, moving beyond the conventional ImageNet backbone. The framework adopts an encoder-decoder structure, with the encoder utilizing a Swin transformer to efficiently embed most important features. This process involves a Transfer Learning method, wherein layers from the Vision Transformer are converted by the Encoder Transformer and seamlessly integrated into a CNN Decoder. This methodology ensures minimal information loss from the original input image. The decoder employs a multi-decoding technique, utilizing dual decoders to generate two distinct attention maps. These maps are subsequently combined into a singular output via an additional CNN model. Our trained model MDS-ViTNet achieves state-of-the-art results across several benchmarks. Committed to fostering further collaboration, we intend to make our code, models, and datasets accessible to the public.
Going beyond Compositions, DDPMs Can Produce Zero-Shot Interpolations
Denoising Diffusion Probabilistic Models (DDPMs) exhibit remarkable capabilities in image generation, with studies suggesting that they can generalize by composing latent factors learned from the training data. In this work, we go further and study DDPMs trained on strictly separate subsets of the data distribution with large gaps on the support of the latent factors. We show that such a model can effectively generate images in the unexplored, intermediate regions of the distribution. For instance, when trained on clearly smiling and non-smiling faces, we demonstrate a sampling procedure which can generate slightly smiling faces without reference images (zero-shot interpolation). We replicate these findings for other attributes as well as other datasets. Our code is available at https://github.com/jdeschena/ddpm-zero-shot-interpolation.
SoftTiger: A Clinical Foundation Model for Healthcare Workflows
We introduce SoftTiger, a clinical large language model (CLaM) designed as a foundation model for healthcare workflows. The narrative and unstructured nature of clinical notes is a major obstacle for healthcare intelligentization. We address a critical problem of structuring clinical notes into clinical data, according to international interoperability standards. We collect and annotate data for three subtasks, namely, international patient summary, clinical impression and medical encounter. We then supervised fine-tuned a state-of-the-art LLM using public and credentialed clinical data. The training is orchestrated in a way that the target model can first support basic clinical tasks such as abbreviation expansion and temporal information extraction, and then learn to perform more complex downstream clinical tasks. Moreover, we address several modeling challenges in the healthcare context, e.g., extra long context window. Our blind pairwise evaluation shows that SoftTiger outperforms other popular open-source models and GPT-3.5, comparable to Gemini-pro, with a mild gap from GPT-4. We believe that LLMs may become a step-stone towards healthcare digitalization and democratization. Therefore, we publicly release SoftTiger models at scales of 13 billion and 70 billion parameters, as well as datasets and code for our innovative scalable evaluation, hopefully, making a significant contribution to the healthcare industry.
Towards Zero-Shot Scale-Aware Monocular Depth Estimation
Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to produce metric predictions. Even so, the resulting models will be geometry-specific, with learned scales that cannot be directly transferred across domains. Because of that, recent works focus instead on relative depth, eschewing scale in favor of improved up-to-scale zero-shot transfer. In this work we introduce ZeroDepth, a novel monocular depth estimation framework capable of predicting metric scale for arbitrary test images from different domains and camera parameters. This is achieved by (i) the use of input-level geometric embeddings that enable the network to learn a scale prior over objects; and (ii) decoupling the encoder and decoder stages, via a variational latent representation that is conditioned on single frame information. We evaluated ZeroDepth targeting both outdoor (KITTI, DDAD, nuScenes) and indoor (NYUv2) benchmarks, and achieved a new state-of-the-art in both settings using the same pre-trained model, outperforming methods that train on in-domain data and require test-time scaling to produce metric estimates.
DeLiRa: Self-Supervised Depth, Light, and Radiance Fields
Differentiable volumetric rendering is a powerful paradigm for 3D reconstruction and novel view synthesis. However, standard volume rendering approaches struggle with degenerate geometries in the case of limited viewpoint diversity, a common scenario in robotics applications. In this work, we propose to use the multi-view photometric objective from the self-supervised depth estimation literature as a geometric regularizer for volumetric rendering, significantly improving novel view synthesis without requiring additional information. Building upon this insight, we explore the explicit modeling of scene geometry using a generalist Transformer, jointly learning a radiance field as well as depth and light fields with a set of shared latent codes. We demonstrate that sharing geometric information across tasks is mutually beneficial, leading to improvements over single-task learning without an increase in network complexity. Our DeLiRa architecture achieves state-of-the-art results on the ScanNet benchmark, enabling high quality volumetric rendering as well as real-time novel view and depth synthesis in the limited viewpoint diversity setting.
Eliciting Latent Predictions from Transformers with the Tuned Lens
We analyze transformers from the perspective of iterative inference, seeking to understand how model predictions are refined layer by layer. To do so, we train an affine probe for each block in a frozen pretrained model, making it possible to decode every hidden state into a distribution over the vocabulary. Our method, the tuned lens, is a refinement of the earlier "logit lens" technique, which yielded useful insights but is often brittle. We test our method on various autoregressive language models with up to 20B parameters, showing it to be more predictive, reliable and unbiased than the logit lens. With causal experiments, we show the tuned lens uses similar features to the model itself. We also find the trajectory of latent predictions can be used to detect malicious inputs with high accuracy. All code needed to reproduce our results can be found at https://github.com/AlignmentResearch/tuned-lens.
Over-parametrization via Lifting for Low-rank Matrix Sensing: Conversion of Spurious Solutions to Strict Saddle Points
This paper studies the role of over-parametrization in solving non-convex optimization problems. The focus is on the important class of low-rank matrix sensing, where we propose an infinite hierarchy of non-convex problems via the lifting technique and the Burer-Monteiro factorization. This contrasts with the existing over-parametrization technique where the search rank is limited by the dimension of the matrix and it does not allow a rich over-parametrization of an arbitrary degree. We show that although the spurious solutions of the problem remain stationary points through the hierarchy, they will be transformed into strict saddle points (under some technical conditions) and can be escaped via local search methods. This is the first result in the literature showing that over-parametrization creates a negative curvature for escaping spurious solutions. We also derive a bound on how much over-parametrization is requited to enable the elimination of spurious solutions.
Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures
Hyperdimensional computing (HD), also known as vector symbolic architectures (VSA), is a framework for computing with distributed representations by exploiting properties of random high-dimensional vector spaces. The commitment of the scientific community to aggregate and disseminate research in this particularly multidisciplinary area has been fundamental for its advancement. Joining these efforts, we present Torchhd, a high-performance open source Python library for HD/VSA. Torchhd seeks to make HD/VSA more accessible and serves as an efficient foundation for further research and application development. The easy-to-use library builds on top of PyTorch and features state-of-the-art HD/VSA functionality, clear documentation, and implementation examples from well-known publications. Comparing publicly available code with their corresponding Torchhd implementation shows that experiments can run up to 100x faster. Torchhd is available at: https://github.com/hyperdimensional-computing/torchhd.
Fine-Tuning Transformers: Vocabulary Transfer
Transformers are responsible for the vast majority of recent advances in natural language processing. The majority of practical natural language processing applications of these models are typically enabled through transfer learning. This paper studies if corpus-specific tokenization used for fine-tuning improves the resulting performance of the model. Through a series of experiments, we demonstrate that such tokenization combined with the initialization and fine-tuning strategy for the vocabulary tokens speeds up the transfer and boosts the performance of the fine-tuned model. We call this aspect of transfer facilitation vocabulary transfer.
Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies
Reinforcement learning (RL) for continuous control typically employs distributions whose support covers the entire action space. In this work, we investigate the colloquially known phenomenon that trained agents often prefer actions at the boundaries of that space. We draw theoretical connections to the emergence of bang-bang behavior in optimal control, and provide extensive empirical evaluation across a variety of recent RL algorithms. We replace the normal Gaussian by a Bernoulli distribution that solely considers the extremes along each action dimension - a bang-bang controller. Surprisingly, this achieves state-of-the-art performance on several continuous control benchmarks - in contrast to robotic hardware, where energy and maintenance cost affect controller choices. Since exploration, learning,and the final solution are entangled in RL, we provide additional imitation learning experiments to reduce the impact of exploration on our analysis. Finally, we show that our observations generalize to environments that aim to model real-world challenges and evaluate factors to mitigate the emergence of bang-bang solutions. Our findings emphasize challenges for benchmarking continuous control algorithms, particularly in light of potential real-world applications.
Unsupervised Neural Machine Translation with Generative Language Models Only
We show how to derive state-of-the-art unsupervised neural machine translation systems from generatively pre-trained language models. Our method consists of three steps: few-shot amplification, distillation, and backtranslation. We first use the zero-shot translation ability of large pre-trained language models to generate translations for a small set of unlabeled sentences. We then amplify these zero-shot translations by using them as few-shot demonstrations for sampling a larger synthetic dataset. This dataset is distilled by discarding the few-shot demonstrations and then fine-tuning. During backtranslation, we repeatedly generate translations for a set of inputs and then fine-tune a single language model on both directions of the translation task at once, ensuring cycle-consistency by swapping the roles of gold monotext and generated translations when fine-tuning. By using our method to leverage GPT-3's zero-shot translation capability, we achieve a new state-of-the-art in unsupervised translation on the WMT14 English-French benchmark, attaining a BLEU score of 42.1.
StoryDB: Broad Multi-language Narrative Dataset
This paper presents StoryDB - a broad multi-language dataset of narratives. StoryDB is a corpus of texts that includes stories in 42 different languages. Every language includes 500+ stories. Some of the languages include more than 20 000 stories. Every story is indexed across languages and labeled with tags such as a genre or a topic. The corpus shows rich topical and language variation and can serve as a resource for the study of the role of narrative in natural language processing across various languages including low resource ones. We also demonstrate how the dataset could be used to benchmark three modern multilanguage models, namely, mDistillBERT, mBERT, and XLM-RoBERTa.
Large Batch Training of Convolutional Networks
A common way to speed up training of large convolutional networks is to add computational units. Training is then performed using data-parallel synchronous Stochastic Gradient Descent (SGD) with mini-batch divided between computational units. With an increase in the number of nodes, the batch size grows. But training with large batch size often results in the lower model accuracy. We argue that the current recipe for large batch training (linear learning rate scaling with warm-up) is not general enough and training may diverge. To overcome this optimization difficulties we propose a new training algorithm based on Layer-wise Adaptive Rate Scaling (LARS). Using LARS, we scaled Alexnet up to a batch size of 8K, and Resnet-50 to a batch size of 32K without loss in accuracy.
Effective Long-Context Scaling of Foundation Models
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.
Relightable Full-Body Gaussian Codec Avatars
We propose Relightable Full-Body Gaussian Codec Avatars, a new approach for modeling relightable full-body avatars with fine-grained details including face and hands. The unique challenge for relighting full-body avatars lies in the large deformations caused by body articulation and the resulting impact on appearance caused by light transport. Changes in body pose can dramatically change the orientation of body surfaces with respect to lights, resulting in both local appearance changes due to changes in local light transport functions, as well as non-local changes due to occlusion between body parts. To address this, we decompose the light transport into local and non-local effects. Local appearance changes are modeled using learnable zonal harmonics for diffuse radiance transfer. Unlike spherical harmonics, zonal harmonics are highly efficient to rotate under articulation. This allows us to learn diffuse radiance transfer in a local coordinate frame, which disentangles the local radiance transfer from the articulation of the body. To account for non-local appearance changes, we introduce a shadow network that predicts shadows given precomputed incoming irradiance on a base mesh. This facilitates the learning of non-local shadowing between the body parts. Finally, we use a deferred shading approach to model specular radiance transfer and better capture reflections and highlights such as eye glints. We demonstrate that our approach successfully models both the local and non-local light transport required for relightable full-body avatars, with a superior generalization ability under novel illumination conditions and unseen poses.
Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning
The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same (epsilon, delta)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.
Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.
trajdata: A Unified Interface to Multiple Human Trajectory Datasets
The field of trajectory forecasting has grown significantly in recent years, partially owing to the release of numerous large-scale, real-world human trajectory datasets for autonomous vehicles (AVs) and pedestrian motion tracking. While such datasets have been a boon for the community, they each use custom and unique data formats and APIs, making it cumbersome for researchers to train and evaluate methods across multiple datasets. To remedy this, we present trajdata: a unified interface to multiple human trajectory datasets. At its core, trajdata provides a simple, uniform, and efficient representation and API for trajectory and map data. As a demonstration of its capabilities, in this work we conduct a comprehensive empirical evaluation of existing trajectory datasets, providing users with a rich understanding of the data underpinning much of current pedestrian and AV motion forecasting research, and proposing suggestions for future datasets from these insights. trajdata is permissively licensed (Apache 2.0) and can be accessed online at https://github.com/NVlabs/trajdata
SpinQuant: LLM quantization with learned rotations
Post-training quantization (PTQ) techniques applied to weights, activations, and the KV cache greatly reduce memory usage, latency, and power consumption of Large Language Models (LLMs), but may lead to large quantization errors when outliers are present. Recent findings suggest that rotating activation or weight matrices helps remove outliers and benefits quantization. In this work, we identify a collection of applicable rotation parameterizations that lead to identical outputs in full-precision Transformer architectures, and find that some random rotations lead to much better quantization than others, with an up to 13 points difference in downstream zero-shot reasoning performance. As a result, we propose SpinQuant that optimizes (or learns) the rotation matrices with Cayley optimization on a small validation set. With 4-bit quantization of weight, activation, and KV-cache, SpinQuant narrows the accuracy gap on zero-shot reasoning tasks with full precision to merely 2.9 points on the LLaMA-2 7B model, surpassing LLM-QAT by 19.1 points and SmoothQuant by 25.0 points. SpinQuant also outperforms concurrent work QuaRot, which applies random rotations to remove outliers. In particular, for LLaMA-2 7B/LLaMA-3 8B models that are hard to quantize, SpinQuant reduces the gap to full precision by 30.2%/34.1% relative to QuaRot.
ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications
Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community.
Tabular Transformers for Modeling Multivariate Time Series
Tabular datasets are ubiquitous in data science applications. Given their importance, it seems natural to apply state-of-the-art deep learning algorithms in order to fully unlock their potential. Here we propose neural network models that represent tabular time series that can optionally leverage their hierarchical structure. This results in two architectures for tabular time series: one for learning representations that is analogous to BERT and can be pre-trained end-to-end and used in downstream tasks, and one that is akin to GPT and can be used for generation of realistic synthetic tabular sequences. We demonstrate our models on two datasets: a synthetic credit card transaction dataset, where the learned representations are used for fraud detection and synthetic data generation, and on a real pollution dataset, where the learned encodings are used to predict atmospheric pollutant concentrations. Code and data are available at https://github.com/IBM/TabFormer.
Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models
Large language models (LLMs) often produce inaccurate or misleading content-hallucinations. To address this challenge, we introduce Noise-Augmented Fine-Tuning (NoiseFiT), a novel framework that leverages adaptive noise injection based on the signal-to-noise ratio (SNR) to enhance model robustness. In particular, NoiseFiT selectively perturbs layers identified as either high-SNR (more robust) or low-SNR (potentially under-regularized) using a dynamically scaled Gaussian noise. We further propose a hybrid loss that combines standard cross-entropy, soft cross-entropy, and consistency regularization to ensure stable and accurate outputs under noisy training conditions. Our theoretical analysis shows that adaptive noise injection is both unbiased and variance-preserving, providing strong guarantees for convergence in expectation. Empirical results on multiple test and benchmark datasets demonstrate that NoiseFiT significantly reduces hallucination rates, often improving or matching baseline performance in key tasks. These findings highlight the promise of noise-driven strategies for achieving robust, trustworthy language modeling without incurring prohibitive computational overhead. Given the comprehensive and detailed nature of our experiments, we have publicly released the fine-tuning logs, benchmark evaluation artifacts, and source code online at W&B, Hugging Face, and GitHub, respectively, to foster further research, accessibility and reproducibility.
Neural MMO v1.3: A Massively Multiagent Game Environment for Training and Evaluating Neural Networks
Progress in multiagent intelligence research is fundamentally limited by the number and quality of environments available for study. In recent years, simulated games have become a dominant research platform within reinforcement learning, in part due to their accessibility and interpretability. Previous works have targeted and demonstrated success on arcade, first person shooter (FPS), real-time strategy (RTS), and massive online battle arena (MOBA) games. Our work considers massively multiplayer online role-playing games (MMORPGs or MMOs), which capture several complexities of real-world learning that are not well modeled by any other game genre. We present Neural MMO, a massively multiagent game environment inspired by MMOs and discuss our progress on two more general challenges in multiagent systems engineering for AI research: distributed infrastructure and game IO. We further demonstrate that standard policy gradient methods and simple baseline models can learn interesting emergent exploration and specialization behaviors in this setting.
app.build: A Production Framework for Scaling Agentic Prompt-to-App Generation with Environment Scaffolding
We present app.build (https://github.com/appdotbuild/agent/), an open-source framework that improves LLM-based application generation through systematic validation and structured environments. Our approach combines multi-layered validation pipelines, stack-specific orchestration, and model-agnostic architecture, implemented across three reference stacks. Through evaluation on 30 generation tasks, we demonstrate that comprehensive validation achieves 73.3% viability rate with 30% reaching perfect quality scores, while open-weights models achieve 80.8% of closed-model performance when provided structured environments. The open-source framework has been adopted by the community, with over 3,000 applications generated to date. This work demonstrates that scaling reliable AI agents requires scaling environments, not just models -- providing empirical insights and complete reference implementations for production-oriented agent systems.
PGC: Physics-Based Gaussian Cloth from a Single Pose
We introduce a novel approach to reconstruct simulation-ready garments with intricate appearance. Despite recent advancements, existing methods often struggle to balance the need for accurate garment reconstruction with the ability to generalize to new poses and body shapes or require large amounts of data to achieve this. In contrast, our method only requires a multi-view capture of a single static frame. We represent garments as hybrid mesh-embedded 3D Gaussian splats, where the Gaussians capture near-field shading and high-frequency details, while the mesh encodes far-field albedo and optimized reflectance parameters. We achieve novel pose generalization by exploiting the mesh from our hybrid approach, enabling physics-based simulation and surface rendering techniques, while also capturing fine details with Gaussians that accurately reconstruct garment details. Our optimized garments can be used for simulating garments on novel poses, and garment relighting. Project page: https://phys-gaussian-cloth.github.io .
EventSplat: 3D Gaussian Splatting from Moving Event Cameras for Real-time Rendering
We introduce a method for using event camera data in novel view synthesis via Gaussian Splatting. Event cameras offer exceptional temporal resolution and a high dynamic range. Leveraging these capabilities allows us to effectively address the novel view synthesis challenge in the presence of fast camera motion. For initialization of the optimization process, our approach uses prior knowledge encoded in an event-to-video model. We also use spline interpolation for obtaining high quality poses along the event camera trajectory. This enhances the reconstruction quality from fast-moving cameras while overcoming the computational limitations traditionally associated with event-based Neural Radiance Field (NeRF) methods. Our experimental evaluation demonstrates that our results achieve higher visual fidelity and better performance than existing event-based NeRF approaches while being an order of magnitude faster to render.
Accelerating Online Mapping and Behavior Prediction via Direct BEV Feature Attention
Understanding road geometry is a critical component of the autonomous vehicle (AV) stack. While high-definition (HD) maps can readily provide such information, they suffer from high labeling and maintenance costs. Accordingly, many recent works have proposed methods for estimating HD maps online from sensor data. The vast majority of recent approaches encode multi-camera observations into an intermediate representation, e.g., a bird's eye view (BEV) grid, and produce vector map elements via a decoder. While this architecture is performant, it decimates much of the information encoded in the intermediate representation, preventing downstream tasks (e.g., behavior prediction) from leveraging them. In this work, we propose exposing the rich internal features of online map estimation methods and show how they enable more tightly integrating online mapping with trajectory forecasting. In doing so, we find that directly accessing internal BEV features yields up to 73% faster inference speeds and up to 29% more accurate predictions on the real-world nuScenes dataset.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
Producing and Leveraging Online Map Uncertainty in Trajectory Prediction
High-definition (HD) maps have played an integral role in the development of modern autonomous vehicle (AV) stacks, albeit with high associated labeling and maintenance costs. As a result, many recent works have proposed methods for estimating HD maps online from sensor data, enabling AVs to operate outside of previously-mapped regions. However, current online map estimation approaches are developed in isolation of their downstream tasks, complicating their integration in AV stacks. In particular, they do not produce uncertainty or confidence estimates. In this work, we extend multiple state-of-the-art online map estimation methods to additionally estimate uncertainty and show how this enables more tightly integrating online mapping with trajectory forecasting. In doing so, we find that incorporating uncertainty yields up to 50% faster training convergence and up to 15% better prediction performance on the real-world nuScenes driving dataset.
Distilling the Knowledge in Data Pruning
With the increasing size of datasets used for training neural networks, data pruning becomes an attractive field of research. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when training on a pruned subset. That is, rather than relying solely on ground-truth labels, we also use the soft predictions from a teacher network pre-trained on the complete data. By integrating KD into training, we demonstrate significant improvement across datasets, pruning methods, and on all pruning fractions. We first establish a theoretical motivation for employing self-distillation to improve training on pruned data. Then, we empirically make a compelling and highly practical observation: using KD, simple random pruning is comparable or superior to sophisticated pruning methods across all pruning regimes. On ImageNet for example, we achieve superior accuracy despite training on a random subset of only 50% of the data. Additionally, we demonstrate a crucial connection between the pruning factor and the optimal knowledge distillation weight. This helps mitigate the impact of samples with noisy labels and low-quality images retained by typical pruning algorithms. Finally, we make an intriguing observation: when using lower pruning fractions, larger teachers lead to accuracy degradation, while surprisingly, employing teachers with a smaller capacity than the student's may improve results. Our code will be made available.
HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding
We consider a contrastive learning approach to knowledge graph embedding (KGE) via InfoNCE. For KGE, efficient learning relies on augmenting the training data with negative triples. However, most KGE works overlook the bias from generating the negative triples-false negative triples (factual triples missing from the knowledge graph). We argue that the generation of high-quality (i.e., hard) negative triples might lead to an increase in false negative triples. To mitigate the impact of false negative triples during the generation of hard negative triples, we propose the Hardness and Structure-aware (HaSa) contrastive KGE method, which alleviates the effect of false negative triples while generating the hard negative triples. Experiments show that HaSa improves the performance of InfoNCE-based KGE approaches and achieves state-of-the-art results in several metrics for WN18RR datasets and competitive results for FB15k-237 datasets compared to both classic and pre-trained LM-based KGE methods.
NU:BRIEF -- A Privacy-aware Newsletter Personalization Engine for Publishers
Newsletters have (re-) emerged as a powerful tool for publishers to engage with their readers directly and more effectively. Despite the diversity in their audiences, publishers' newsletters remain largely a one-size-fits-all offering, which is suboptimal. In this paper, we present NU:BRIEF, a web application for publishers that enables them to personalize their newsletters without harvesting personal data. Personalized newsletters build a habit and become a great conversion tool for publishers, providing an alternative readers-generated revenue model to a declining ad/clickbait-centered business model.
LightOn Optical Processing Unit: Scaling-up AI and HPC with a Non von Neumann co-processor
We introduce LightOn's Optical Processing Unit (OPU), the first photonic AI accelerator chip available on the market for at-scale Non von Neumann computations, reaching 1500 TeraOPS. It relies on a combination of free-space optics with off-the-shelf components, together with a software API allowing a seamless integration within Python-based processing pipelines. We discuss a variety of use cases and hybrid network architectures, with the OPU used in combination of CPU/GPU, and draw a pathway towards "optical advantage".
GAN-Control: Explicitly Controllable GANs
We present a framework for training GANs with explicit control over generated images. We are able to control the generated image by settings exact attributes such as age, pose, expression, etc. Most approaches for editing GAN-generated images achieve partial control by leveraging the latent space disentanglement properties, obtained implicitly after standard GAN training. Such methods are able to change the relative intensity of certain attributes, but not explicitly set their values. Recently proposed methods, designed for explicit control over human faces, harness morphable 3D face models to allow fine-grained control capabilities in GANs. Unlike these methods, our control is not constrained to morphable 3D face model parameters and is extendable beyond the domain of human faces. Using contrastive learning, we obtain GANs with an explicitly disentangled latent space. This disentanglement is utilized to train control-encoders mapping human-interpretable inputs to suitable latent vectors, thus allowing explicit control. In the domain of human faces we demonstrate control over identity, age, pose, expression, hair color and illumination. We also demonstrate control capabilities of our framework in the domains of painted portraits and dog image generation. We demonstrate that our approach achieves state-of-the-art performance both qualitatively and quantitatively.
Masked Trajectory Models for Prediction, Representation, and Control
We introduce Masked Trajectory Models (MTM) as a generic abstraction for sequential decision making. MTM takes a trajectory, such as a state-action sequence, and aims to reconstruct the trajectory conditioned on random subsets of the same trajectory. By training with a highly randomized masking pattern, MTM learns versatile networks that can take on different roles or capabilities, by simply choosing appropriate masks at inference time. For example, the same MTM network can be used as a forward dynamics model, inverse dynamics model, or even an offline RL agent. Through extensive experiments in several continuous control tasks, we show that the same MTM network -- i.e. same weights -- can match or outperform specialized networks trained for the aforementioned capabilities. Additionally, we find that state representations learned by MTM can significantly accelerate the learning speed of traditional RL algorithms. Finally, in offline RL benchmarks, we find that MTM is competitive with specialized offline RL algorithms, despite MTM being a generic self-supervised learning method without any explicit RL components. Code is available at https://github.com/facebookresearch/mtm
Pretrained Transformers as Universal Computation Engines
We investigate the capability of a transformer pretrained on natural language to generalize to other modalities with minimal finetuning -- in particular, without finetuning of the self-attention and feedforward layers of the residual blocks. We consider such a model, which we call a Frozen Pretrained Transformer (FPT), and study finetuning it on a variety of sequence classification tasks spanning numerical computation, vision, and protein fold prediction. In contrast to prior works which investigate finetuning on the same modality as the pretraining dataset, we show that pretraining on natural language can improve performance and compute efficiency on non-language downstream tasks. Additionally, we perform an analysis of the architecture, comparing the performance of a random initialized transformer to a random LSTM. Combining the two insights, we find language-pretrained transformers can obtain strong performance on a variety of non-language tasks.
A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding
We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods.
