- LLM-Empowered State Representation for Reinforcement Learning Conventional state representations in reinforcement learning often omit critical task-related details, presenting a significant challenge for value networks in establishing accurate mappings from states to task rewards. Traditional methods typically depend on extensive sample learning to enrich state representations with task-specific information, which leads to low sample efficiency and high time costs. Recently, surging knowledgeable large language models (LLM) have provided promising substitutes for prior injection with minimal human intervention. Motivated by this, we propose LLM-Empowered State Representation (LESR), a novel approach that utilizes LLM to autonomously generate task-related state representation codes which help to enhance the continuity of network mappings and facilitate efficient training. Experimental results demonstrate LESR exhibits high sample efficiency and outperforms state-of-the-art baselines by an average of 29% in accumulated reward in Mujoco tasks and 30% in success rates in Gym-Robotics tasks. 7 authors · Jul 18, 2024
3 panda-gym: Open-source goal-conditioned environments for robotic learning This paper presents panda-gym, a set of Reinforcement Learning (RL) environments for the Franka Emika Panda robot integrated with OpenAI Gym. Five tasks are included: reach, push, slide, pick & place and stack. They all follow a Multi-Goal RL framework, allowing to use goal-oriented RL algorithms. To foster open-research, we chose to use the open-source physics engine PyBullet. The implementation chosen for this package allows to define very easily new tasks or new robots. This paper also presents a baseline of results obtained with state-of-the-art model-free off-policy algorithms. panda-gym is open-source and freely available at https://github.com/qgallouedec/panda-gym. 4 authors · Jun 25, 2021
2 Safe Reinforcement Learning in a Simulated Robotic Arm Reinforcement learning (RL) agents need to explore their environments in order to learn optimal policies. In many environments and tasks, safety is of critical importance. The widespread use of simulators offers a number of advantages, including safe exploration which will be inevitable in cases when RL systems need to be trained directly in the physical environment (e.g. in human-robot interaction). The popular Safety Gym library offers three mobile agent types that can learn goal-directed tasks while considering various safety constraints. In this paper, we extend the applicability of safe RL algorithms by creating a customized environment with Panda robotic arm where Safety Gym algorithms can be tested. We performed pilot experiments with the popular PPO algorithm comparing the baseline with the constrained version and show that the constrained version is able to learn the equally good policy while better complying with safety constraints and taking longer training time as expected. 2 authors · Nov 28, 2023