Papers
arxiv:2602.16802

References Improve LLM Alignment in Non-Verifiable Domains

Published on Feb 18
· Submitted by
Yixin Liu
on Feb 20
Authors:
,
,

Abstract

Reference-guided LLM-evaluators enhance LLM alignment by serving as soft verifiers, improving judge accuracy and enabling effective post-training in non-verifiable domains through self-improvement techniques.

AI-generated summary

While Reinforcement Learning with Verifiable Rewards (RLVR) has shown strong effectiveness in reasoning tasks, it cannot be directly applied to non-verifiable domains lacking ground-truth verifiers, such as LLM alignment. In this work, we investigate whether reference-guided LLM-evaluators can bridge this gap by serving as soft "verifiers". First, we design evaluation protocols that enhance LLM-based evaluators for LLM alignment using reference outputs. Through comprehensive experiments, we show that a reference-guided approach substantially improves the accuracy of less capable LLM-judges using references from frontier models; stronger LLM-judges can also be enhanced by high-quality (i.e., human-written) references. Building on these improved judges, we demonstrate the utility of high-quality references in alignment tuning, where LLMs guided with references are used as judges to self-improve. We show that reference-guided self-improvement yields clear gains over both direct SFT on reference outputs and self-improvement with reference-free judges, achieving performance comparable to training with ArmoRM, a strong finetuned reward model. Specifically, our method achieves 73.1% and 58.7% on AlpacaEval and Arena-Hard with Llama-3-8B-Instruct, and 70.0% and 74.1% with Qwen2.5-7B, corresponding to average absolute gains of +20.2 / +17.1 points over SFT distillation and +5.3 / +3.6 points over reference-free self-improvement on AlpacaEval / Arena-Hard. These results highlight the potential of using reference-guided LLM-evaluators to enable effective LLM post-training in non-verifiable domains.

Community

Paper author Paper submitter

While Reinforcement Learning with Verifiable Rewards (RLVR) has shown strong effectiveness in reasoning tasks, it cannot be directly applied to non-verifiable domains lacking ground-truth verifiers, such as LLM alignment. In this work, we investigate whether reference-guided LLM-evaluators can bridge this gap by serving as soft "verifiers". First, we design evaluation protocols that enhance LLM-based evaluators for LLM alignment using reference outputs. Through comprehensive experiments, we show that a reference-guided approach substantially improves the accuracy of less capable LLM-judges using references from frontier models; stronger LLM-judges can also be enhanced by high-quality (i.e., human-written) references. Building on these improved judges, we demonstrate the utility of high-quality references in alignment tuning, where LLMs guided with references are used as judges to self-improve. We show that reference-guided self-improvement yields clear gains over both direct SFT on reference outputs and self-improvement with reference-free judges, achieving performance comparable to training with ArmoRM, a strong finetuned reward model. Specifically, our method achieves 73.1% and 58.7% on AlpacaEval and Arena-Hard with Llama-3-8B-Instruct, and 70.0% and 74.1% with Qwen2.5-7B, corresponding to average absolute gains of +20.2 / +17.1 points over SFT distillation and +5.3 / +3.6 points over reference-free self-improvement on AlpacaEval / Arena-Hard. These results highlight the potential of using reference-guided LLM-evaluators to enable effective LLM post-training in non-verifiable domains.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2602.16802 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2602.16802 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2602.16802 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.