# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- from functools import wraps import warnings from typing import List, Optional, Tuple, Union from types import MethodType import torch.utils.checkpoint import transformers from torch import nn from torch.nn import CrossEntropyLoss from transformers import GenerationConfig from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from transformers import LlamaForCausalLM, Qwen2ForCausalLM, Qwen3ForCausalLM, Qwen3MoeForCausalLM from transformers.modeling_outputs import SequenceClassifierOutputWithPast from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from .configuration_internvl_chat import InternVLChatConfig from .conversation import get_conv_template from .modeling_intern_vit import InternVisionModel, has_flash_attn logger = logging.get_logger(__name__) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) def transformers_seq_cls_forward(self, *args, origin_forward, **kwargs): labels = kwargs.pop('labels', None) return_dict = kwargs.pop('return_dict', None) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_ids = kwargs.get('input_ids') inputs_embeds = kwargs.get('inputs_embeds') output = origin_forward(*args, **kwargs) if hasattr(output, 'logits'): output.logits = output.logits.to(self.score.weight.dtype) elif 'last_hidden_state' in output: output.logits = output['last_hidden_state'].to(self.score.weight.dtype) logits = self.score(output.logits) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.') if self.config.pad_token_id is None: sequence_lengths = -1 else: if output.get('attention_mask') is not None: # When use padding_free in seq_cls tasks, `revert_padding_free` will add a attention_mask in the output batch_size = output.get('attention_mask').shape[0] sequence_lengths = output.get('attention_mask').sum(dim=1) - 1 elif input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] elif kwargs.get('attention_mask') is not None: sequence_lengths = kwargs['attention_mask'].sum(dim=1) - 1 else: sequence_lengths = -1 if isinstance(sequence_lengths, torch.Tensor): sequence_lengths = sequence_lengths.to(logits.device) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = 'single_label_classification' else: self.config.problem_type = 'multi_label_classification' if self.config.problem_type == 'regression': loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == 'single_label_classification': loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == 'multi_label_classification': loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits, ) + output[1:] return ((loss, ) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=output.past_key_values, hidden_states=output.hidden_states, attentions=output.attentions, ) class InternVLChatModel(PreTrainedModel): config_class = InternVLChatConfig main_input_name = 'pixel_values' base_model_prefix = 'language_model' _supports_flash_attn_2 = True supports_gradient_checkpointing = True _no_split_modules = [ "InternVisionModel", "Qwen3DecoderLayer", ] # support transformers 4.51.+ _tp_plan = '' def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version use_flash_attn = use_flash_attn if has_flash_attn else False config.vision_config.use_flash_attn = True if use_flash_attn else False config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: architecture: str = config.llm_config.architectures[0] if architecture == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif architecture == 'Qwen2ForCausalLM': self.language_model = Qwen2ForCausalLM(config.llm_config) elif architecture == 'Qwen3MoeForCausalLM': self.language_model = Qwen3MoeForCausalLM(config.llm_config) elif architecture == 'Qwen3ForCausalLM': self.language_model = Qwen3ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{architecture} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) # import pdb; pdb.set_trace() #! >>> NEW: user token & user embedding table emb = self.language_model.get_input_embeddings() target_dtype = getattr(emb.weight, "dtype", torch.float32) target_device = getattr(emb.weight, "device", torch.device("cpu")) user_ckpt_path = getattr(config, "user_table_path", "/vcc-data/peihaow/perrm/user_table.pt") train_user_table = bool(getattr(config, "train_user_table", False)) self.user_table = self._build_or_load_user_table( user_ckpt_path=user_ckpt_path, default_num_users=getattr(config, "num_users", 100000), hidden_size=llm_hidden_size, dtype=target_dtype, device=target_device, trainable=train_user_table, ) self.user_token_id = None #! <<< NEW self.img_context_token_id = None self.conv_template = get_conv_template(self.template) self.system_message = self.conv_template.system_message #! >>> NEW: Patch it to be a sequence cls model llm_model = self.language_model llm_model.score = nn.Linear(llm_model.config.hidden_size, config.num_labels, bias=False, dtype=llm_model.dtype) llm_model.set_output_embeddings(nn.Identity()) #! <<< NEW origin_forward = llm_model.forward @wraps(origin_forward.__func__) def new_forward(self, *args, **kwargs): return transformers_seq_cls_forward(self, *args, origin_forward=origin_forward, **kwargs) llm_model.forward = MethodType(new_forward, llm_model) def _build_or_load_user_table(self, user_ckpt_path: Optional[str], default_num_users: int, hidden_size: int, dtype: torch.dtype, device: torch.device, trainable: bool) -> nn.Embedding: """ 如果提供了 checkpoint,就按其中的 num_embeddings/embedding_dim/weight 恢复; 否则新建一个随机初始化的表。始终把 dtype/device 对齐到 LLM embedding。 """ if user_ckpt_path: ckpt = torch.load(user_ckpt_path, map_location="cpu") # 兼容不同 key 命名(你给出的格式) num_embeddings = int(ckpt["num_embeddings"]) embedding_dim = int(ckpt["embedding_dim"]) weight = ckpt["weight"] # [num_embeddings, embedding_dim] if embedding_dim != hidden_size: raise ValueError( f"user_table embedding_dim={embedding_dim} != llm_hidden_size={hidden_size}. " "请使用同一隐藏维度,或在加载后加一层线性投影对齐。" ) table = nn.Embedding(num_embeddings, embedding_dim) with torch.no_grad(): table.weight.copy_(weight) else: table = nn.Embedding(default_num_users, hidden_size) nn.init.normal_(table.weight, std=0.02) # 训练与参数组控制 table.weight.requires_grad = trainable # 对齐 dtype/device(特别是 bf16/fp16) table.to(device=device, dtype=dtype) return table def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, user_ids: Optional[torch.LongTensor] = None, inputs_embeds: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: import pdb; pdb.set_trace() return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() vit_embeds = self.extract_feature(pixel_values) vit_embeds = vit_embeds[image_flags == 1] vit_batch_size = pixel_values.shape[0] B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) # if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: # print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) try: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = min(selected.sum(), vit_embeds.size(0)) input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) #! >>> NEW: 用 user_table 替换 位置 if (self.user_token_id is not None) and (user_ids is not None): # user 向量: [B, H] -> [B, 1, H] -> [B, N, H] uvec = self.user_table(user_ids.to(input_embeds.device)).unsqueeze(1).expand(-1, N, -1) user_mask = (input_ids.view(B, N) == self.user_token_id).unsqueeze(-1) # [B, N, 1] # 替换:所有 位置用对应 batch 的 uvec input_embeds = torch.where(user_mask, uvec.to(input_embeds.dtype), input_embeds) #! <<< NEW outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if self.ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values): if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True).hidden_states[self.select_layer] vit_embeds = vit_embeds[:, 1:, :] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds) return vit_embeds def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_images_list=None, num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None): if history is not None or return_history: print('Now multi-turn chat is not supported in batch_chat.') raise NotImplementedError if image_counts is not None: num_patches_list = image_counts print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') if num_images_list is None: num_images_list = [1] * len(questions) queries = [] sum_images = 0 for idx, num_images in enumerate(num_images_list): question = questions[idx] template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() num_patches_sublist = num_patches_list[sum_images:sum_images+num_images] sum_images += num_images for num_patches in num_patches_sublist: image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) tokenizer.padding_side = 'left' model_inputs = tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) if generation_config['return_dict_in_generate']: sequences = generation_output.sequences hidden_states = generation_output.hidden_states[-1][-1]#.squeeze() # 0 indicates most recent step and -1 indicates last layer else: sequences = generation_output responses = tokenizer.batch_decode(sequences, skip_special_tokens=True) responses = [response.split(template.sep.strip())[0].strip() for response in responses] if generation_config['output_hidden_states']: return responses, hidden_states return responses def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, num_patches_list=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False): if history is None and pixel_values is not None and '' not in question: question = '\n' + question if num_patches_list is None: num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] assert pixel_values is None or len(pixel_values) == sum(num_patches_list) img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id template = get_conv_template(self.template) template.system_message = self.system_message eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) history = [] if history is None else history for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') for num_patches in num_patches_list: image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) if generation_config['return_dict_in_generate']: sequences = generation_output.sequences hidden_states = generation_output.hidden_states[-1][-1].squeeze() # 0 indicates most recent step and -1 indicates last layer else: sequences = generation_output response = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] response = response.split(template.sep.strip())[0].strip() if generation_config['output_hidden_states']: return response, hidden_states history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 # try: input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) # except: # import pdb # pdb.set_trace() input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, use_cache=True, **generate_kwargs, ) return outputs @property def lm_head(self): return self.language_model.get_output_embeddings() def get_output_embeddings(self): return self.language_model.get_output_embeddings() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): return self.language_model.set_input_embeddings(value) def set_output_embeddings(self, value): return self.language_model.set_output_embeddings(value) from transformers.modeling_layers import GenericForSequenceClassification class InternVLChatForSequenceClassification(GenericForSequenceClassification, InternVLChatModel): pass