|
|
|
|
|
""" |
|
|
Transform repo-style schema JSON into a Hugging Face–friendly "long list": |
|
|
|
|
|
- Top-level keys like "002125_filename" are moved into each record's INFO: |
|
|
INFO.ID = "002125" |
|
|
INFO.FILENAME = "filename" |
|
|
- Normalize tables and columns to consistent lists (not dicts). |
|
|
- Ensure presence of standard fields with sensible defaults. |
|
|
- Output as JSON (list) or JSON Lines. |
|
|
|
|
|
Usage: |
|
|
python transform_to_hf.py input.json -o output.json # JSON array |
|
|
python transform_to_hf.py input.json -o output.jsonl --jsonl # JSONL |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import json |
|
|
import sys |
|
|
from typing import Any, Dict, List, Optional |
|
|
import gzip |
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_COLUMN = { |
|
|
"TYPE": None, |
|
|
"NULLABLE": True, |
|
|
"UNIQUE": False, |
|
|
"DEFAULT": None, |
|
|
"CHECKS": [], |
|
|
"IS_PRIMARY": False, |
|
|
"IS_INDEX": False, |
|
|
"VALUES": None, |
|
|
} |
|
|
|
|
|
DEFAULT_TABLE = { |
|
|
"PRIMARY_KEYS": [], |
|
|
"FOREIGN_KEYS": [], |
|
|
"CHECKS": [], |
|
|
"INDEXES": [], |
|
|
} |
|
|
|
|
|
from typing import Tuple, Set |
|
|
from huggingface_hub import HfApi, HfFolder |
|
|
from datasets import Dataset |
|
|
|
|
|
def _normalize_index_like(x) -> List[str]: |
|
|
""" |
|
|
Normalize index-like fields (INDEXES, PRIMARY_KEYS) into a list[str]. |
|
|
- Single column indexes expressed as ["col"] or [["col"]] -> ["col"] |
|
|
- Composite indexes like ["a","b"] or [["a","b"]] -> ["a,b"] |
|
|
- Scalars pass through -> ["scalar"] |
|
|
""" |
|
|
if x is None: |
|
|
return [] |
|
|
if not isinstance(x, list): |
|
|
x = [x] |
|
|
|
|
|
out: List[str] = [] |
|
|
for item in x: |
|
|
if item is None: |
|
|
continue |
|
|
if isinstance(item, (list, tuple, set)): |
|
|
flat = [_strify_scalar(v) for v in item if v is not None] |
|
|
if len(flat) == 1: |
|
|
out.append(flat[0]) |
|
|
elif len(flat) > 1: |
|
|
out.append(",".join(flat)) |
|
|
else: |
|
|
out.append(_strify_scalar(item)) |
|
|
return out |
|
|
|
|
|
def _strify_scalar(x): |
|
|
if x is None: |
|
|
return None |
|
|
if isinstance(x, (dict, list, tuple, set)): |
|
|
|
|
|
return json.dumps(x, ensure_ascii=False) |
|
|
return str(x) |
|
|
|
|
|
def _strify_list(x): |
|
|
if x is None: |
|
|
return None |
|
|
if not isinstance(x, list): |
|
|
x = [x] |
|
|
return [_strify_scalar(v) for v in x] |
|
|
|
|
|
|
|
|
def split_id_filename(key: str): |
|
|
"""Split '002125_filename.ext' into ('002125', 'filename.ext') if possible.""" |
|
|
if "_" in key: |
|
|
id_part, filename = key.split("_", 1) |
|
|
return id_part, filename |
|
|
return None, key |
|
|
|
|
|
def norm_list(x, *, default_empty_list=True): |
|
|
if x is None: |
|
|
return [] if default_empty_list else None |
|
|
if isinstance(x, list): |
|
|
return x |
|
|
|
|
|
return [x] |
|
|
|
|
|
def coalesce(a, b): |
|
|
"""Merge dictionaries with 'a' taking precedence where keys overlap.""" |
|
|
out = dict(b or {}) |
|
|
out.update(a or {}) |
|
|
return out |
|
|
|
|
|
def normalize_column(col_name: str, col_payload: Dict[str, Any]) -> Dict[str, Any]: |
|
|
|
|
|
payload = {} |
|
|
weird_values_keys = [k for k in col_payload.keys() if str(k).strip("’'\"").upper() == "VALUES"] |
|
|
for k, v in (col_payload or {}).items(): |
|
|
key_up = str(k).strip().upper().strip("’\"") |
|
|
if key_up == "VALUES" or k in weird_values_keys: |
|
|
payload["VALUES"] = v |
|
|
else: |
|
|
payload[key_up] = v |
|
|
|
|
|
base = DEFAULT_COLUMN.copy() |
|
|
base.update(payload) |
|
|
|
|
|
|
|
|
checks = _strify_list(base.get("CHECKS")) or [] |
|
|
values = _strify_list(base.get("VALUES")) |
|
|
default_val = _strify_scalar(base.get("DEFAULT")) |
|
|
ctype = _strify_scalar(base.get("TYPE")) |
|
|
|
|
|
normalized = { |
|
|
"NAME": col_name, |
|
|
"TYPE": ctype, |
|
|
"NULLABLE": bool(base.get("NULLABLE", True)), |
|
|
"UNIQUE": bool(base.get("UNIQUE", False)), |
|
|
"DEFAULT": default_val, |
|
|
"CHECKS": checks, |
|
|
"IS_PRIMARY": bool(base.get("IS_PRIMARY", False)), |
|
|
"IS_INDEX": bool(base.get("IS_INDEX", False)), |
|
|
"VALUES": values, |
|
|
} |
|
|
return normalized |
|
|
|
|
|
|
|
|
def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str, Any]: |
|
|
tp = {(k.strip().upper() if isinstance(k, str) else k): v |
|
|
for k, v in (table_payload or {}).items()} |
|
|
|
|
|
columns_obj = tp.get("COLUMNS", {}) or {} |
|
|
columns_list: List[Dict[str, Any]] = [] |
|
|
|
|
|
if isinstance(columns_obj, dict): |
|
|
for col_name, col_payload in columns_obj.items(): |
|
|
columns_list.append(normalize_column(str(col_name), col_payload or {})) |
|
|
elif isinstance(columns_obj, list): |
|
|
for c in columns_obj: |
|
|
if isinstance(c, dict): |
|
|
col_name = ( |
|
|
c.get("NAME") or c.get("name") or |
|
|
c.get("COLUMN_NAME") or c.get("column_name") or "unknown" |
|
|
) |
|
|
columns_list.append(normalize_column(str(col_name), c or {})) |
|
|
|
|
|
base = DEFAULT_TABLE.copy() |
|
|
base["PRIMARY_KEYS"] = list(base.get("PRIMARY_KEYS", [])) + list(tp.get("PRIMARY_KEYS", []) or []) |
|
|
base["FOREIGN_KEYS"] = list(tp.get("FOREIGN_KEYS", []) or []) |
|
|
base["CHECKS"] = list(tp.get("CHECKS", []) or []) |
|
|
base["INDEXES"] = list(tp.get("INDEXES", []) or []) |
|
|
|
|
|
|
|
|
norm_fks = [] |
|
|
for fk in base["FOREIGN_KEYS"]: |
|
|
if not isinstance(fk, dict): |
|
|
continue |
|
|
fk_up = {(k.strip().upper() if isinstance(k, str) else k): v for k, v in fk.items()} |
|
|
norm_fks.append({ |
|
|
"COLUMNS": _strify_list(fk_up.get("COLUMNS")) or [], |
|
|
"FOREIGN_TABLE": _strify_scalar(fk_up.get("FOREIGN_TABLE")), |
|
|
"REFERRED_COLUMNS": _strify_list(fk_up.get("REFERRED_COLUMNS")) or [], |
|
|
"ON_DELETE": _strify_scalar(fk_up.get("ON_DELETE")), |
|
|
"ON_UPDATE": _strify_scalar(fk_up.get("ON_UPDATE")), |
|
|
}) |
|
|
|
|
|
|
|
|
norm_pks = _normalize_index_like(base["PRIMARY_KEYS"]) |
|
|
norm_indexes = _normalize_index_like(base["INDEXES"]) |
|
|
|
|
|
return { |
|
|
"TABLE_NAME": table_name, |
|
|
"COLUMNS": columns_list, |
|
|
"PRIMARY_KEYS": norm_pks, |
|
|
"FOREIGN_KEYS": norm_fks, |
|
|
"CHECKS": _strify_list(base["CHECKS"]) or [], |
|
|
"INDEXES": norm_indexes, |
|
|
} |
|
|
|
|
|
def normalize_record(key: str, payload: Dict[str, Any]) -> Dict[str, Any]: |
|
|
id_part, filename = split_id_filename(key) |
|
|
|
|
|
|
|
|
info_in = payload.get("INFO", {}) or {} |
|
|
info_norm = dict(info_in) |
|
|
if id_part: |
|
|
info_norm.setdefault("ID", id_part) |
|
|
info_norm.setdefault("FILENAME", filename) |
|
|
|
|
|
|
|
|
tables_obj = payload.get("TABLES", {}) or {} |
|
|
tables_list = [] |
|
|
if isinstance(tables_obj, dict): |
|
|
for tname, tpayload in tables_obj.items(): |
|
|
tables_list.append(normalize_table(tname, tpayload or {})) |
|
|
elif isinstance(tables_obj, list): |
|
|
|
|
|
for t in tables_obj: |
|
|
if isinstance(t, dict): |
|
|
tname = t.get("TABLE_NAME") or t.get("name") or "unknown" |
|
|
tables_list.append(normalize_table(tname, t)) |
|
|
|
|
|
normalized = { |
|
|
"ID": info_norm.get("ID", None), |
|
|
"FILENAME": info_norm.get("FILENAME", None), |
|
|
"URL": info_in.get("URL", None), |
|
|
"LICENSE": info_in["LICENSE"] if "LICENSE" in info_in else "UNKNOWN", |
|
|
"PERMISSIVE": bool(info_in.get("PERMISSIVE", False)), |
|
|
"TABLES": tables_list, |
|
|
} |
|
|
return normalized |
|
|
|
|
|
def transform(data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
|
if not isinstance(data, dict): |
|
|
raise ValueError("Expected top-level object to be a dict mapping keys like '002125_filename' to records.") |
|
|
out: List[Dict[str, Any]] = [] |
|
|
for key, payload in data.items(): |
|
|
out.append(normalize_record(str(key), payload or {})) |
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
with gzip.open("schemapile-perm.json.gz", "rt", encoding="utf-8") as f: |
|
|
data = json.loads(f.read()) |
|
|
records = transform(data) |
|
|
|
|
|
|
|
|
fh = open("data.jsonl", "w", encoding="utf-8") |
|
|
close = True |
|
|
|
|
|
try: |
|
|
for rec in records: |
|
|
fh.write(json.dumps(rec, ensure_ascii=False) + "\n") |
|
|
finally: |
|
|
if close: |
|
|
fh.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset = Dataset.from_json("data.jsonl") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |