Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,23 +1,87 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
- config_name: default
|
| 20 |
-
data_files:
|
| 21 |
-
- split: test
|
| 22 |
-
path: data/test-*
|
| 23 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
datasets:
|
| 3 |
+
- name: leee99/yt8m-h264
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
tags:
|
| 7 |
+
- video
|
| 8 |
+
- h264
|
| 9 |
+
- bytestream
|
| 10 |
+
- compressed-domain
|
| 11 |
+
- youtube8m
|
| 12 |
+
- machine-learning
|
| 13 |
+
- dataset
|
| 14 |
+
license: mit
|
| 15 |
+
size_categories:
|
| 16 |
+
- n<1K
|
| 17 |
+
task_categories:
|
| 18 |
+
- other
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
---
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# 📦 yt8m-h264
|
| 23 |
+
|
| 24 |
+
`yt8m-h264` is a lightweight derivative of the YouTube-8M dataset that exposes **H.264 NAL units** (SPS, PPS, IDR) for efficient bytestream-level modeling and compression-aware video research.
|
| 25 |
+
|
| 26 |
+
This dataset stores pre-processed **H.264 bytestream chunks** directly in **Arrow artifacts**, allowing fast loading with:
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
from datasets import load_dataset
|
| 30 |
+
ds = load_dataset("leee99/yt8m-h264")
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
No decoding, FFMPEG, or custom scripts are required at load time.
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## ✅ What’s inside?
|
| 38 |
+
|
| 39 |
+
* Extracted from YouTube-8M video segments
|
| 40 |
+
* Each sample contains:
|
| 41 |
+
|
| 42 |
+
* **`sps`**: Sequence of SPS NAL units (as raw bytes)
|
| 43 |
+
* **`pps`**: Sequence of PPS NAL units (as raw bytes)
|
| 44 |
+
* **`idr`**: Sequence of IDR slice NAL units (as raw bytes)
|
| 45 |
+
* Stored directly in Arrow (`binary`) columns
|
| 46 |
+
|
| 47 |
+
A single example looks like:
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
{
|
| 51 |
+
"sample_id": "00001234",
|
| 52 |
+
"sps": [b"\x00\x00\x00...\x67"], # list of byte payloads
|
| 53 |
+
"pps": [b"\x00\x00\x00...\x68"],
|
| 54 |
+
"idr": [b"\x65\x88\x99..."], # IDR slices as raw byte arrays
|
| 55 |
+
}
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
These bytes correspond to Annex-B NAL units (`0x00 00 00 01 <nal-header> <payload>`), suitable for:
|
| 59 |
+
|
| 60 |
+
* bytestream modeling
|
| 61 |
+
* compressed-domain video understanding
|
| 62 |
+
* tokenization (Byte-level / Bit-level)
|
| 63 |
+
* entropy analysis
|
| 64 |
+
* H.264 syntax learning
|
| 65 |
+
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
## ✅ Loading the dataset
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from datasets import load_dataset
|
| 72 |
+
ds = load_dataset("leee99/yt8m-h264")
|
| 73 |
+
|
| 74 |
+
print(ds)
|
| 75 |
+
print(ds["test"][0])
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
Outputs:
|
| 79 |
+
|
| 80 |
+
```
|
| 81 |
+
DatasetDict({
|
| 82 |
+
test: Dataset({
|
| 83 |
+
features: ['sample_id', 'sps', 'pps', 'idr'],
|
| 84 |
+
num_rows: <N>
|
| 85 |
+
})
|
| 86 |
+
})
|
| 87 |
+
```
|