Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Igbo
Size:
10K<n<100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Igbo Named Entity Recognition Dataset""" | |
| import datasets | |
| _CITATION = """\ | |
| @misc{ezeani2020igboenglish, | |
| title={Igbo-English Machine Translation: An Evaluation Benchmark}, | |
| author={Ignatius Ezeani and Paul Rayson and Ikechukwu Onyenwe and Chinedu Uchechukwu and Mark Hepple}, | |
| year={2020}, | |
| eprint={2004.00648}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CL} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Igbo Named Entity Recognition Dataset | |
| """ | |
| _HOMEPAGE = "https://github.com/IgnatiusEzeani/IGBONLP/tree/master/ig_ner" | |
| _URLs = { | |
| "ner_data": "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_ner/igbo_data.txt", | |
| "free_text": "https://raw.githubusercontent.com/IgnatiusEzeani/IGBONLP/master/ig_ner/igbo_data10000.txt", | |
| } | |
| class IgboNer(datasets.GeneratorBasedBuilder): | |
| """Dataset from the Igbo NER Project""" | |
| VERSION = datasets.Version("1.1.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="ner_data", | |
| version=VERSION, | |
| description="This dataset contains the named entity and all the sentences containing that entity.", | |
| ), | |
| datasets.BuilderConfig( | |
| name="free_text", version=VERSION, description="This dataset contains all sentences used for NER." | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "ner_data" | |
| def _info(self): | |
| if self.config.name == "ner_data": | |
| features = datasets.Features( | |
| { | |
| "content_n": datasets.Value("string"), | |
| "named_entity": datasets.Value("string"), | |
| "sentences": datasets.Sequence(datasets.Value("string")), | |
| } | |
| ) | |
| else: | |
| features = datasets.Features( | |
| { | |
| "sentences": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| my_urls = _URLs[self.config.name] | |
| data_dir = dl_manager.download_and_extract(my_urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": data_dir, | |
| "split": "train", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| """Yields examples.""" | |
| dictionary = {} | |
| with open(filepath, "r", encoding="utf-8-sig") as f: | |
| if self.config.name == "ner_data": | |
| for id_, row in enumerate(f): | |
| row = row.strip().split("\t") | |
| content_n = row[0] | |
| if content_n in dictionary.keys(): | |
| (dictionary[content_n]["sentences"]).append(row[1]) | |
| else: | |
| dictionary[content_n] = {} | |
| dictionary[content_n]["named_entity"] = row[1] | |
| dictionary[content_n]["sentences"] = [row[1]] | |
| yield id_, { | |
| "content_n": content_n, | |
| "named_entity": dictionary[content_n]["named_entity"], | |
| "sentences": dictionary[content_n]["sentences"], | |
| } | |
| else: | |
| for id_, row in enumerate(f): | |
| yield id_, { | |
| "sentences": row.strip(), | |
| } | |