Delete loading script
Browse files
xtreme.py
DELETED
|
@@ -1,940 +0,0 @@
|
|
| 1 |
-
"""TODO(xtreme): Add a description here."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import csv
|
| 5 |
-
import json
|
| 6 |
-
import os
|
| 7 |
-
import textwrap
|
| 8 |
-
|
| 9 |
-
import datasets
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# TODO(xtreme): BibTeX citation
|
| 13 |
-
_CITATION = """\
|
| 14 |
-
@article{hu2020xtreme,
|
| 15 |
-
author = {Junjie Hu and Sebastian Ruder and Aditya Siddhant and Graham Neubig and Orhan Firat and Melvin Johnson},
|
| 16 |
-
title = {XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization},
|
| 17 |
-
journal = {CoRR},
|
| 18 |
-
volume = {abs/2003.11080},
|
| 19 |
-
year = {2020},
|
| 20 |
-
archivePrefix = {arXiv},
|
| 21 |
-
eprint = {2003.11080}
|
| 22 |
-
}
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
# TODO(xtrem):
|
| 26 |
-
_DESCRIPTION = """\
|
| 27 |
-
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
|
| 28 |
-
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
|
| 29 |
-
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
|
| 30 |
-
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
|
| 31 |
-
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
|
| 32 |
-
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
|
| 33 |
-
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
|
| 34 |
-
"""
|
| 35 |
-
_MLQA_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi"]
|
| 36 |
-
_XQUAD_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi", "el", "ru", "th", "tr"]
|
| 37 |
-
_PAWSX_LANG = ["de", "en", "es", "fr", "ja", "ko", "zh"]
|
| 38 |
-
_BUCC_LANG = ["de", "fr", "zh", "ru"]
|
| 39 |
-
_TATOEBA_LANG = [
|
| 40 |
-
"afr",
|
| 41 |
-
"ara",
|
| 42 |
-
"ben",
|
| 43 |
-
"bul",
|
| 44 |
-
"deu",
|
| 45 |
-
"cmn",
|
| 46 |
-
"ell",
|
| 47 |
-
"est",
|
| 48 |
-
"eus",
|
| 49 |
-
"fin",
|
| 50 |
-
"fra",
|
| 51 |
-
"heb",
|
| 52 |
-
"hin",
|
| 53 |
-
"hun",
|
| 54 |
-
"ind",
|
| 55 |
-
"ita",
|
| 56 |
-
"jav",
|
| 57 |
-
"jpn",
|
| 58 |
-
"kat",
|
| 59 |
-
"kaz",
|
| 60 |
-
"kor",
|
| 61 |
-
"mal",
|
| 62 |
-
"mar",
|
| 63 |
-
"nld",
|
| 64 |
-
"pes",
|
| 65 |
-
"por",
|
| 66 |
-
"rus",
|
| 67 |
-
"spa",
|
| 68 |
-
"swh",
|
| 69 |
-
"tam",
|
| 70 |
-
"tel",
|
| 71 |
-
"tgl",
|
| 72 |
-
"tha",
|
| 73 |
-
"tur",
|
| 74 |
-
"urd",
|
| 75 |
-
"vie",
|
| 76 |
-
]
|
| 77 |
-
|
| 78 |
-
_UD_POS_LANG = [
|
| 79 |
-
"Afrikaans",
|
| 80 |
-
"Arabic",
|
| 81 |
-
"Basque",
|
| 82 |
-
"Bulgarian",
|
| 83 |
-
"Dutch",
|
| 84 |
-
"English",
|
| 85 |
-
"Estonian",
|
| 86 |
-
"Finnish",
|
| 87 |
-
"French",
|
| 88 |
-
"German",
|
| 89 |
-
"Greek",
|
| 90 |
-
"Hebrew",
|
| 91 |
-
"Hindi",
|
| 92 |
-
"Hungarian",
|
| 93 |
-
"Indonesian",
|
| 94 |
-
"Italian",
|
| 95 |
-
"Japanese",
|
| 96 |
-
"Kazakh",
|
| 97 |
-
"Korean",
|
| 98 |
-
"Chinese",
|
| 99 |
-
"Marathi",
|
| 100 |
-
"Persian",
|
| 101 |
-
"Portuguese",
|
| 102 |
-
"Russian",
|
| 103 |
-
"Spanish",
|
| 104 |
-
"Tagalog",
|
| 105 |
-
"Tamil",
|
| 106 |
-
"Telugu",
|
| 107 |
-
"Thai",
|
| 108 |
-
"Turkish",
|
| 109 |
-
"Urdu",
|
| 110 |
-
"Vietnamese",
|
| 111 |
-
"Yoruba",
|
| 112 |
-
]
|
| 113 |
-
_PAN_X_LANG = [
|
| 114 |
-
"af",
|
| 115 |
-
"ar",
|
| 116 |
-
"bg",
|
| 117 |
-
"bn",
|
| 118 |
-
"de",
|
| 119 |
-
"el",
|
| 120 |
-
"en",
|
| 121 |
-
"es",
|
| 122 |
-
"et",
|
| 123 |
-
"eu",
|
| 124 |
-
"fa",
|
| 125 |
-
"fi",
|
| 126 |
-
"fr",
|
| 127 |
-
"he",
|
| 128 |
-
"hi",
|
| 129 |
-
"hu",
|
| 130 |
-
"id",
|
| 131 |
-
"it",
|
| 132 |
-
"ja",
|
| 133 |
-
"jv",
|
| 134 |
-
"ka",
|
| 135 |
-
"kk",
|
| 136 |
-
"ko",
|
| 137 |
-
"ml",
|
| 138 |
-
"mr",
|
| 139 |
-
"ms",
|
| 140 |
-
"my",
|
| 141 |
-
"nl",
|
| 142 |
-
"pt",
|
| 143 |
-
"ru",
|
| 144 |
-
"sw",
|
| 145 |
-
"ta",
|
| 146 |
-
"te",
|
| 147 |
-
"th",
|
| 148 |
-
"tl",
|
| 149 |
-
"tr",
|
| 150 |
-
"ur",
|
| 151 |
-
"vi",
|
| 152 |
-
"yo",
|
| 153 |
-
"zh",
|
| 154 |
-
]
|
| 155 |
-
|
| 156 |
-
_NAMES = ["XNLI", "tydiqa", "SQuAD"]
|
| 157 |
-
for lang in _PAN_X_LANG:
|
| 158 |
-
_NAMES.append(f"PAN-X.{lang}")
|
| 159 |
-
for lang1 in _MLQA_LANG:
|
| 160 |
-
for lang2 in _MLQA_LANG:
|
| 161 |
-
_NAMES.append(f"MLQA.{lang1}.{lang2}")
|
| 162 |
-
for lang in _XQUAD_LANG:
|
| 163 |
-
_NAMES.append(f"XQuAD.{lang}")
|
| 164 |
-
for lang in _BUCC_LANG:
|
| 165 |
-
_NAMES.append(f"bucc18.{lang}")
|
| 166 |
-
for lang in _PAWSX_LANG:
|
| 167 |
-
_NAMES.append(f"PAWS-X.{lang}")
|
| 168 |
-
for lang in _TATOEBA_LANG:
|
| 169 |
-
_NAMES.append(f"tatoeba.{lang}")
|
| 170 |
-
for lang in _UD_POS_LANG:
|
| 171 |
-
_NAMES.append(f"udpos.{lang}")
|
| 172 |
-
|
| 173 |
-
_DESCRIPTIONS = {
|
| 174 |
-
"tydiqa": textwrap.dedent(
|
| 175 |
-
"""Gold passage task (GoldP): Given a passage that is guaranteed to contain the
|
| 176 |
-
answer, predict the single contiguous span of characters that answers the question. This is more similar to
|
| 177 |
-
existing reading comprehension datasets (as opposed to the information-seeking task outlined above).
|
| 178 |
-
This task is constructed with two goals in mind: (1) more directly comparing with prior work and (2) providing
|
| 179 |
-
a simplified way for researchers to use TyDi QA by providing compatibility with existing code for SQuAD 1.1,
|
| 180 |
-
XQuAD, and MLQA. Toward these goals, the gold passage task differs from the primary task in several ways:
|
| 181 |
-
only the gold answer passage is provided rather than the entire Wikipedia article;
|
| 182 |
-
unanswerable questions have been discarded, similar to MLQA and XQuAD;
|
| 183 |
-
we evaluate with the SQuAD 1.1 metrics like XQuAD; and
|
| 184 |
-
Thai and Japanese are removed since the lack of whitespace breaks some tools.
|
| 185 |
-
"""
|
| 186 |
-
),
|
| 187 |
-
"XNLI": textwrap.dedent(
|
| 188 |
-
"""
|
| 189 |
-
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and
|
| 190 |
-
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into
|
| 191 |
-
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
|
| 192 |
-
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the
|
| 193 |
-
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to
|
| 194 |
-
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only
|
| 195 |
-
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI
|
| 196 |
-
is an evaluation benchmark."""
|
| 197 |
-
),
|
| 198 |
-
"PAWS-X": textwrap.dedent(
|
| 199 |
-
"""
|
| 200 |
-
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
|
| 201 |
-
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
|
| 202 |
-
translated pairs are sourced from examples in PAWS-Wiki."""
|
| 203 |
-
),
|
| 204 |
-
"XQuAD": textwrap.dedent(
|
| 205 |
-
"""\
|
| 206 |
-
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
|
| 207 |
-
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
|
| 208 |
-
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
|
| 209 |
-
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
|
| 210 |
-
the dataset is entirely parallel across 11 languages."""
|
| 211 |
-
),
|
| 212 |
-
"MLQA": textwrap.dedent(
|
| 213 |
-
"""\
|
| 214 |
-
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
|
| 215 |
-
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
|
| 216 |
-
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
|
| 217 |
-
4 different languages on average."""
|
| 218 |
-
),
|
| 219 |
-
"tatoeba": textwrap.dedent(
|
| 220 |
-
"""\
|
| 221 |
-
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
|
| 222 |
-
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
|
| 223 |
-
this paper for a description of the languages, their families and scripts as well as baseline results.
|
| 224 |
-
Please note that the English sentences are not identical for all language pairs. This means that the results are
|
| 225 |
-
not directly comparable across languages. In particular, the sentences tend to have less variety for several
|
| 226 |
-
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
|
| 227 |
-
"""
|
| 228 |
-
),
|
| 229 |
-
"bucc18": textwrap.dedent(
|
| 230 |
-
"""Building and Using Comparable Corpora
|
| 231 |
-
"""
|
| 232 |
-
),
|
| 233 |
-
"udpos": textwrap.dedent(
|
| 234 |
-
"""\
|
| 235 |
-
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
|
| 236 |
-
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
|
| 237 |
-
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
|
| 238 |
-
the first part of the Short Introduction and then browsing the annotation guidelines.
|
| 239 |
-
"""
|
| 240 |
-
),
|
| 241 |
-
"SQuAD": textwrap.dedent(
|
| 242 |
-
"""\
|
| 243 |
-
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
|
| 244 |
-
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
|
| 245 |
-
articles, where the answer to every question is a segment of text, or span, \
|
| 246 |
-
from the corresponding reading passage, or the question might be unanswerable."""
|
| 247 |
-
),
|
| 248 |
-
"PAN-X": textwrap.dedent(
|
| 249 |
-
"""\
|
| 250 |
-
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
|
| 251 |
-
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
|
| 252 |
-
can be loaded with the DaNLP package:"""
|
| 253 |
-
),
|
| 254 |
-
}
|
| 255 |
-
_CITATIONS = {
|
| 256 |
-
"tydiqa": textwrap.dedent(
|
| 257 |
-
(
|
| 258 |
-
"""\
|
| 259 |
-
@article{tydiqa,
|
| 260 |
-
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
|
| 261 |
-
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
|
| 262 |
-
year = {2020},
|
| 263 |
-
journal = {Transactions of the Association for Computational Linguistics}
|
| 264 |
-
}"""
|
| 265 |
-
)
|
| 266 |
-
),
|
| 267 |
-
"XNLI": textwrap.dedent(
|
| 268 |
-
"""\
|
| 269 |
-
@InProceedings{conneau2018xnli,
|
| 270 |
-
author = {Conneau, Alexis
|
| 271 |
-
and Rinott, Ruty
|
| 272 |
-
and Lample, Guillaume
|
| 273 |
-
and Williams, Adina
|
| 274 |
-
and Bowman, Samuel R.
|
| 275 |
-
and Schwenk, Holger
|
| 276 |
-
and Stoyanov, Veselin},
|
| 277 |
-
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
|
| 278 |
-
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
|
| 279 |
-
in Natural Language Processing},
|
| 280 |
-
year = {2018},
|
| 281 |
-
publisher = {Association for Computational Linguistics},
|
| 282 |
-
location = {Brussels, Belgium},
|
| 283 |
-
}"""
|
| 284 |
-
),
|
| 285 |
-
"XQuAD": textwrap.dedent(
|
| 286 |
-
"""
|
| 287 |
-
@article{Artetxe:etal:2019,
|
| 288 |
-
author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama},
|
| 289 |
-
title = {On the cross-lingual transferability of monolingual representations},
|
| 290 |
-
journal = {CoRR},
|
| 291 |
-
volume = {abs/1910.11856},
|
| 292 |
-
year = {2019},
|
| 293 |
-
archivePrefix = {arXiv},
|
| 294 |
-
eprint = {1910.11856}
|
| 295 |
-
}
|
| 296 |
-
"""
|
| 297 |
-
),
|
| 298 |
-
"MLQA": textwrap.dedent(
|
| 299 |
-
"""\
|
| 300 |
-
@article{lewis2019mlqa,
|
| 301 |
-
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
|
| 302 |
-
author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
|
| 303 |
-
journal={arXiv preprint arXiv:1910.07475},
|
| 304 |
-
year={2019}"""
|
| 305 |
-
),
|
| 306 |
-
"PAWS-X": textwrap.dedent(
|
| 307 |
-
"""\
|
| 308 |
-
@InProceedings{pawsx2019emnlp,
|
| 309 |
-
title = {{PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification}},
|
| 310 |
-
author = {Yang, Yinfei and Zhang, Yuan and Tar, Chris and Baldridge, Jason},
|
| 311 |
-
booktitle = {Proc. of EMNLP},
|
| 312 |
-
year = {2019}
|
| 313 |
-
}"""
|
| 314 |
-
),
|
| 315 |
-
"tatoeba": textwrap.dedent(
|
| 316 |
-
"""\
|
| 317 |
-
@article{tatoeba,
|
| 318 |
-
title={Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond},
|
| 319 |
-
author={Mikel, Artetxe and Holger, Schwenk,},
|
| 320 |
-
journal={arXiv:1812.10464v2},
|
| 321 |
-
year={2018}
|
| 322 |
-
}"""
|
| 323 |
-
),
|
| 324 |
-
"bucc18": textwrap.dedent(""""""),
|
| 325 |
-
"udpos": textwrap.dedent(""""""),
|
| 326 |
-
"SQuAD": textwrap.dedent(
|
| 327 |
-
"""\
|
| 328 |
-
@article{2016arXiv160605250R,
|
| 329 |
-
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
|
| 330 |
-
Konstantin and {Liang}, Percy},
|
| 331 |
-
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
|
| 332 |
-
journal = {arXiv e-prints},
|
| 333 |
-
year = 2016,
|
| 334 |
-
eid = {arXiv:1606.05250},
|
| 335 |
-
pages = {arXiv:1606.05250},
|
| 336 |
-
archivePrefix = {arXiv},
|
| 337 |
-
eprint = {1606.05250},
|
| 338 |
-
}"""
|
| 339 |
-
),
|
| 340 |
-
"PAN-X": textwrap.dedent(
|
| 341 |
-
"""\
|
| 342 |
-
@article{pan-x,
|
| 343 |
-
title={Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond},
|
| 344 |
-
author={Xiaoman, Pan and Boliang, Zhang and Jonathan, May and Joel, Nothman and Kevin, Knight and Heng, Ji},
|
| 345 |
-
volume={Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers}
|
| 346 |
-
year={2017}
|
| 347 |
-
}"""
|
| 348 |
-
),
|
| 349 |
-
}
|
| 350 |
-
|
| 351 |
-
_TEXT_FEATURES = {
|
| 352 |
-
"XNLI": {
|
| 353 |
-
"language": "language",
|
| 354 |
-
"sentence1": "sentence1",
|
| 355 |
-
"sentence2": "sentence2",
|
| 356 |
-
},
|
| 357 |
-
"tydiqa": {
|
| 358 |
-
"id": "id",
|
| 359 |
-
"title": "title",
|
| 360 |
-
"context": "context",
|
| 361 |
-
"question": "question",
|
| 362 |
-
"answers": "answers",
|
| 363 |
-
},
|
| 364 |
-
"XQuAD": {
|
| 365 |
-
"id": "id",
|
| 366 |
-
"context": "context",
|
| 367 |
-
"question": "question",
|
| 368 |
-
"answers": "answers",
|
| 369 |
-
},
|
| 370 |
-
"MLQA": {
|
| 371 |
-
"id": "id",
|
| 372 |
-
"title": "title",
|
| 373 |
-
"context": "context",
|
| 374 |
-
"question": "question",
|
| 375 |
-
"answers": "answers",
|
| 376 |
-
},
|
| 377 |
-
"tatoeba": {
|
| 378 |
-
"source_sentence": "",
|
| 379 |
-
"target_sentence": "",
|
| 380 |
-
"source_lang": "",
|
| 381 |
-
"target_lang": "",
|
| 382 |
-
},
|
| 383 |
-
"bucc18": {
|
| 384 |
-
"source_sentence": "",
|
| 385 |
-
"target_sentence": "",
|
| 386 |
-
"source_lang": "",
|
| 387 |
-
"target_lang": "",
|
| 388 |
-
},
|
| 389 |
-
"PAWS-X": {"sentence1": "sentence1", "sentence2": "sentence2"},
|
| 390 |
-
"udpos": {"tokens": "", "pos_tags": ""},
|
| 391 |
-
"SQuAD": {
|
| 392 |
-
"id": "id",
|
| 393 |
-
"title": "title",
|
| 394 |
-
"context": "context",
|
| 395 |
-
"question": "question",
|
| 396 |
-
"answers": "answers",
|
| 397 |
-
},
|
| 398 |
-
"PAN-X": {"tokens": "", "ner_tags": "", "lang": ""},
|
| 399 |
-
}
|
| 400 |
-
_DATA_URLS = {
|
| 401 |
-
"tydiqa": "https://storage.googleapis.com/tydiqa/",
|
| 402 |
-
"XNLI": "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip",
|
| 403 |
-
"XQuAD": "https://github.com/deepmind/xquad/raw/master/",
|
| 404 |
-
"MLQA": "https://dl.fbaipublicfiles.com/MLQA/MLQA_V1.zip",
|
| 405 |
-
"PAWS-X": "https://storage.googleapis.com/paws/pawsx/x-final.tar.gz",
|
| 406 |
-
"bucc18": "https://comparable.limsi.fr/bucc2018/",
|
| 407 |
-
"tatoeba": "https://github.com/facebookresearch/LASER/raw/main/data/tatoeba/v1/",
|
| 408 |
-
"udpos": "https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-3105/ud-treebanks-v2.5.tgz",
|
| 409 |
-
"SQuAD": "https://rajpurkar.github.io/SQuAD-explorer/dataset/",
|
| 410 |
-
"PAN-X": "https://s3.amazonaws.com/datasets.huggingface.co/wikiann/1.1.0/panx_dataset.zip",
|
| 411 |
-
}
|
| 412 |
-
|
| 413 |
-
_URLS = {
|
| 414 |
-
"tydiqa": "https://github.com/google-research-datasets/tydiqa",
|
| 415 |
-
"XQuAD": "https://github.com/deepmind/xquad",
|
| 416 |
-
"XNLI": "https://www.nyu.edu/projects/bowman/xnli/",
|
| 417 |
-
"MLQA": "https://github.com/facebookresearch/MLQA",
|
| 418 |
-
"PAWS-X": "https://github.com/google-research-datasets/paws/tree/master/pawsx",
|
| 419 |
-
"bucc18": "https://comparable.limsi.fr/bucc2018/",
|
| 420 |
-
"tatoeba": "https://github.com/facebookresearch/LASER/blob/main/data/tatoeba/v1/README.md",
|
| 421 |
-
"udpos": "https://universaldependencies.org/",
|
| 422 |
-
"SQuAD": "https://rajpurkar.github.io/SQuAD-explorer/",
|
| 423 |
-
"PAN-X": "https://github.com/afshinrahimi/mmner",
|
| 424 |
-
}
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
class XtremeConfig(datasets.BuilderConfig):
|
| 428 |
-
"""BuilderConfig for Break"""
|
| 429 |
-
|
| 430 |
-
def __init__(self, data_url, citation, url, text_features, **kwargs):
|
| 431 |
-
"""
|
| 432 |
-
Args:
|
| 433 |
-
text_features: `dict[string, string]`, map from the name of the feature
|
| 434 |
-
dict for each text field to the name of the column in the tsv file
|
| 435 |
-
label_column:
|
| 436 |
-
label_classes
|
| 437 |
-
**kwargs: keyword arguments forwarded to super.
|
| 438 |
-
"""
|
| 439 |
-
super(XtremeConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 440 |
-
self.text_features = text_features
|
| 441 |
-
self.data_url = data_url
|
| 442 |
-
self.citation = citation
|
| 443 |
-
self.url = url
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
class Xtreme(datasets.GeneratorBasedBuilder):
|
| 447 |
-
"""TODO(xtreme): Short description of my dataset."""
|
| 448 |
-
|
| 449 |
-
# TODO(xtreme): Set up version.
|
| 450 |
-
VERSION = datasets.Version("0.1.0")
|
| 451 |
-
BUILDER_CONFIGS = [
|
| 452 |
-
XtremeConfig(
|
| 453 |
-
name=name,
|
| 454 |
-
description=_DESCRIPTIONS[name.split(".")[0]],
|
| 455 |
-
citation=_CITATIONS[name.split(".")[0]],
|
| 456 |
-
text_features=_TEXT_FEATURES[name.split(".")[0]],
|
| 457 |
-
data_url=_DATA_URLS[name.split(".")[0]],
|
| 458 |
-
url=_URLS[name.split(".")[0]],
|
| 459 |
-
)
|
| 460 |
-
for name in _NAMES
|
| 461 |
-
]
|
| 462 |
-
|
| 463 |
-
def _info(self):
|
| 464 |
-
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
| 465 |
-
if "answers" in features.keys():
|
| 466 |
-
features["answers"] = datasets.features.Sequence(
|
| 467 |
-
{
|
| 468 |
-
"answer_start": datasets.Value("int32"),
|
| 469 |
-
"text": datasets.Value("string"),
|
| 470 |
-
}
|
| 471 |
-
)
|
| 472 |
-
if self.config.name.startswith("PAWS-X"):
|
| 473 |
-
features = PawsxParser.features
|
| 474 |
-
elif self.config.name == "XNLI":
|
| 475 |
-
features["gold_label"] = datasets.Value("string")
|
| 476 |
-
elif self.config.name.startswith("udpos"):
|
| 477 |
-
features = UdposParser.features
|
| 478 |
-
elif self.config.name.startswith("PAN-X"):
|
| 479 |
-
features = PanxParser.features
|
| 480 |
-
return datasets.DatasetInfo(
|
| 481 |
-
# This is the description that will appear on the datasets page.
|
| 482 |
-
description=self.config.description + "\n" + _DESCRIPTION,
|
| 483 |
-
# datasets.features.FeatureConnectors
|
| 484 |
-
features=datasets.Features(
|
| 485 |
-
features
|
| 486 |
-
# These are the features of your dataset like images, labels ...
|
| 487 |
-
),
|
| 488 |
-
# If there's a common (input, target) tuple from the features,
|
| 489 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 490 |
-
# builder.as_dataset.
|
| 491 |
-
supervised_keys=None,
|
| 492 |
-
# Homepage of the dataset for documentation
|
| 493 |
-
homepage="https://github.com/google-research/xtreme" + "\t" + self.config.url,
|
| 494 |
-
citation=self.config.citation + "\n" + _CITATION,
|
| 495 |
-
)
|
| 496 |
-
|
| 497 |
-
def _split_generators(self, dl_manager):
|
| 498 |
-
"""Returns SplitGenerators."""
|
| 499 |
-
if self.config.name == "tydiqa":
|
| 500 |
-
train_url = "v1.1/tydiqa-goldp-v1.1-train.json"
|
| 501 |
-
dev_url = "v1.1/tydiqa-goldp-v1.1-dev.json"
|
| 502 |
-
urls_to_download = {
|
| 503 |
-
"train": self.config.data_url + train_url,
|
| 504 |
-
"dev": self.config.data_url + dev_url,
|
| 505 |
-
}
|
| 506 |
-
dl_dir = dl_manager.download_and_extract(urls_to_download)
|
| 507 |
-
return [
|
| 508 |
-
datasets.SplitGenerator(
|
| 509 |
-
name=datasets.Split.TRAIN,
|
| 510 |
-
# These kwargs will be passed to _generate_examples
|
| 511 |
-
gen_kwargs={"filepath": dl_dir["train"]},
|
| 512 |
-
),
|
| 513 |
-
datasets.SplitGenerator(
|
| 514 |
-
name=datasets.Split.VALIDATION,
|
| 515 |
-
# These kwargs will be passed to _generate_examples
|
| 516 |
-
gen_kwargs={"filepath": dl_dir["dev"]},
|
| 517 |
-
),
|
| 518 |
-
]
|
| 519 |
-
if self.config.name == "XNLI":
|
| 520 |
-
dl_dir = dl_manager.download_and_extract(self.config.data_url)
|
| 521 |
-
data_dir = os.path.join(dl_dir, "XNLI-1.0")
|
| 522 |
-
return [
|
| 523 |
-
datasets.SplitGenerator(
|
| 524 |
-
name=datasets.Split.TEST,
|
| 525 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "xnli.test.tsv")},
|
| 526 |
-
),
|
| 527 |
-
datasets.SplitGenerator(
|
| 528 |
-
name=datasets.Split.VALIDATION,
|
| 529 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "xnli.dev.tsv")},
|
| 530 |
-
),
|
| 531 |
-
]
|
| 532 |
-
|
| 533 |
-
if self.config.name.startswith("MLQA"):
|
| 534 |
-
mlqa_downloaded_files = dl_manager.download_and_extract(self.config.data_url)
|
| 535 |
-
l1 = self.config.name.split(".")[1]
|
| 536 |
-
l2 = self.config.name.split(".")[2]
|
| 537 |
-
return [
|
| 538 |
-
datasets.SplitGenerator(
|
| 539 |
-
name=datasets.Split.TEST,
|
| 540 |
-
# These kwargs will be passed to _generate_examples
|
| 541 |
-
gen_kwargs={
|
| 542 |
-
"filepath": os.path.join(
|
| 543 |
-
os.path.join(mlqa_downloaded_files, "MLQA_V1/test"),
|
| 544 |
-
f"test-context-{l1}-question-{l2}.json",
|
| 545 |
-
)
|
| 546 |
-
},
|
| 547 |
-
),
|
| 548 |
-
datasets.SplitGenerator(
|
| 549 |
-
name=datasets.Split.VALIDATION,
|
| 550 |
-
# These kwargs will be passed to _generate_examples
|
| 551 |
-
gen_kwargs={
|
| 552 |
-
"filepath": os.path.join(
|
| 553 |
-
os.path.join(mlqa_downloaded_files, "MLQA_V1/dev"),
|
| 554 |
-
f"dev-context-{l1}-question-{l2}.json",
|
| 555 |
-
)
|
| 556 |
-
},
|
| 557 |
-
),
|
| 558 |
-
]
|
| 559 |
-
|
| 560 |
-
if self.config.name.startswith("XQuAD"):
|
| 561 |
-
lang = self.config.name.split(".")[1]
|
| 562 |
-
xquad_downloaded_file = dl_manager.download_and_extract(self.config.data_url + f"xquad.{lang}.json")
|
| 563 |
-
return [
|
| 564 |
-
datasets.SplitGenerator(
|
| 565 |
-
name=datasets.Split.VALIDATION,
|
| 566 |
-
# These kwargs will be passed to _generate_examples
|
| 567 |
-
gen_kwargs={"filepath": xquad_downloaded_file},
|
| 568 |
-
),
|
| 569 |
-
]
|
| 570 |
-
if self.config.name.startswith("PAWS-X"):
|
| 571 |
-
return PawsxParser.split_generators(dl_manager=dl_manager, config=self.config)
|
| 572 |
-
elif self.config.name.startswith("tatoeba"):
|
| 573 |
-
lang = self.config.name.split(".")[1]
|
| 574 |
-
|
| 575 |
-
tatoeba_source_data = dl_manager.download_and_extract(self.config.data_url + f"tatoeba.{lang}-eng.{lang}")
|
| 576 |
-
tatoeba_eng_data = dl_manager.download_and_extract(self.config.data_url + f"tatoeba.{lang}-eng.eng")
|
| 577 |
-
return [
|
| 578 |
-
datasets.SplitGenerator(
|
| 579 |
-
name=datasets.Split.VALIDATION,
|
| 580 |
-
# These kwargs will be passed to _generate_examples
|
| 581 |
-
gen_kwargs={"filepath": (tatoeba_source_data, tatoeba_eng_data)},
|
| 582 |
-
),
|
| 583 |
-
]
|
| 584 |
-
if self.config.name.startswith("bucc18"):
|
| 585 |
-
lang = self.config.name.split(".")[1]
|
| 586 |
-
bucc18_dl_test_archive = dl_manager.download(
|
| 587 |
-
self.config.data_url + f"bucc2018-{lang}-en.training-gold.tar.bz2"
|
| 588 |
-
)
|
| 589 |
-
bucc18_dl_dev_archive = dl_manager.download(
|
| 590 |
-
self.config.data_url + f"bucc2018-{lang}-en.sample-gold.tar.bz2"
|
| 591 |
-
)
|
| 592 |
-
return [
|
| 593 |
-
datasets.SplitGenerator(
|
| 594 |
-
name=datasets.Split.VALIDATION,
|
| 595 |
-
gen_kwargs={"filepath": dl_manager.iter_archive(bucc18_dl_dev_archive)},
|
| 596 |
-
),
|
| 597 |
-
datasets.SplitGenerator(
|
| 598 |
-
name=datasets.Split.TEST,
|
| 599 |
-
gen_kwargs={"filepath": dl_manager.iter_archive(bucc18_dl_test_archive)},
|
| 600 |
-
),
|
| 601 |
-
]
|
| 602 |
-
if self.config.name.startswith("udpos"):
|
| 603 |
-
return UdposParser.split_generators(dl_manager=dl_manager, config=self.config)
|
| 604 |
-
|
| 605 |
-
if self.config.name == "SQuAD":
|
| 606 |
-
|
| 607 |
-
urls_to_download = {
|
| 608 |
-
"train": self.config.data_url + "train-v1.1.json",
|
| 609 |
-
"dev": self.config.data_url + "dev-v1.1.json",
|
| 610 |
-
}
|
| 611 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 612 |
-
|
| 613 |
-
return [
|
| 614 |
-
datasets.SplitGenerator(
|
| 615 |
-
name=datasets.Split.TRAIN,
|
| 616 |
-
gen_kwargs={"filepath": downloaded_files["train"]},
|
| 617 |
-
),
|
| 618 |
-
datasets.SplitGenerator(
|
| 619 |
-
name=datasets.Split.VALIDATION,
|
| 620 |
-
gen_kwargs={"filepath": downloaded_files["dev"]},
|
| 621 |
-
),
|
| 622 |
-
]
|
| 623 |
-
|
| 624 |
-
if self.config.name.startswith("PAN-X"):
|
| 625 |
-
return PanxParser.split_generators(dl_manager=dl_manager, config=self.config)
|
| 626 |
-
|
| 627 |
-
def _generate_examples(self, filepath=None, **kwargs):
|
| 628 |
-
"""Yields examples."""
|
| 629 |
-
# TODO(xtreme): Yields (key, example) tuples from the dataset
|
| 630 |
-
|
| 631 |
-
if self.config.name == "tydiqa" or self.config.name.startswith("MLQA") or self.config.name == "SQuAD":
|
| 632 |
-
with open(filepath, encoding="utf-8") as f:
|
| 633 |
-
data = json.load(f)
|
| 634 |
-
for article in data["data"]:
|
| 635 |
-
title = article.get("title", "").strip()
|
| 636 |
-
for paragraph in article["paragraphs"]:
|
| 637 |
-
context = paragraph["context"].strip()
|
| 638 |
-
for qa in paragraph["qas"]:
|
| 639 |
-
question = qa["question"].strip()
|
| 640 |
-
id_ = qa["id"]
|
| 641 |
-
|
| 642 |
-
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
| 643 |
-
answers = [answer["text"].strip() for answer in qa["answers"]]
|
| 644 |
-
|
| 645 |
-
# Features currently used are "context", "question", and "answers".
|
| 646 |
-
# Others are extracted here for the ease of future expansions.
|
| 647 |
-
yield id_, {
|
| 648 |
-
"title": title,
|
| 649 |
-
"context": context,
|
| 650 |
-
"question": question,
|
| 651 |
-
"id": id_,
|
| 652 |
-
"answers": {
|
| 653 |
-
"answer_start": answer_starts,
|
| 654 |
-
"text": answers,
|
| 655 |
-
},
|
| 656 |
-
}
|
| 657 |
-
if self.config.name == "XNLI":
|
| 658 |
-
with open(filepath, encoding="utf-8") as f:
|
| 659 |
-
data = csv.DictReader(f, delimiter="\t")
|
| 660 |
-
for id_, row in enumerate(data):
|
| 661 |
-
yield id_, {
|
| 662 |
-
"sentence1": row["sentence1"],
|
| 663 |
-
"sentence2": row["sentence2"],
|
| 664 |
-
"language": row["language"],
|
| 665 |
-
"gold_label": row["gold_label"],
|
| 666 |
-
}
|
| 667 |
-
if self.config.name.startswith("PAWS-X"):
|
| 668 |
-
yield from PawsxParser.generate_examples(config=self.config, filepath=filepath, **kwargs)
|
| 669 |
-
if self.config.name.startswith("XQuAD"):
|
| 670 |
-
with open(filepath, encoding="utf-8") as f:
|
| 671 |
-
xquad = json.load(f)
|
| 672 |
-
for article in xquad["data"]:
|
| 673 |
-
for paragraph in article["paragraphs"]:
|
| 674 |
-
context = paragraph["context"].strip()
|
| 675 |
-
for qa in paragraph["qas"]:
|
| 676 |
-
question = qa["question"].strip()
|
| 677 |
-
id_ = qa["id"]
|
| 678 |
-
|
| 679 |
-
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
| 680 |
-
answers = [answer["text"].strip() for answer in qa["answers"]]
|
| 681 |
-
|
| 682 |
-
# Features currently used are "context", "question", and "answers".
|
| 683 |
-
# Others are extracted here for the ease of future expansions.
|
| 684 |
-
yield id_, {
|
| 685 |
-
"context": context,
|
| 686 |
-
"question": question,
|
| 687 |
-
"id": id_,
|
| 688 |
-
"answers": {
|
| 689 |
-
"answer_start": answer_starts,
|
| 690 |
-
"text": answers,
|
| 691 |
-
},
|
| 692 |
-
}
|
| 693 |
-
if self.config.name.startswith("bucc18"):
|
| 694 |
-
lang = self.config.name.split(".")[1]
|
| 695 |
-
data_dir = f"bucc2018/{lang}-en"
|
| 696 |
-
for path, file in filepath:
|
| 697 |
-
if path.startswith(data_dir):
|
| 698 |
-
csv_content = [line.decode("utf-8") for line in file]
|
| 699 |
-
if path.endswith("en"):
|
| 700 |
-
target_sentences = dict(list(csv.reader(csv_content, delimiter="\t", quotechar=None)))
|
| 701 |
-
elif path.endswith("gold"):
|
| 702 |
-
source_target_ids = list(csv.reader(csv_content, delimiter="\t", quotechar=None))
|
| 703 |
-
else:
|
| 704 |
-
source_sentences = dict(list(csv.reader(csv_content, delimiter="\t", quotechar=None)))
|
| 705 |
-
|
| 706 |
-
for id_, (source_id, target_id) in enumerate(source_target_ids):
|
| 707 |
-
yield id_, {
|
| 708 |
-
"source_sentence": source_sentences[source_id],
|
| 709 |
-
"target_sentence": target_sentences[target_id],
|
| 710 |
-
"source_lang": source_id,
|
| 711 |
-
"target_lang": target_id,
|
| 712 |
-
}
|
| 713 |
-
if self.config.name.startswith("tatoeba"):
|
| 714 |
-
source_file = filepath[0]
|
| 715 |
-
target_file = filepath[1]
|
| 716 |
-
source_sentences = []
|
| 717 |
-
target_sentences = []
|
| 718 |
-
with open(source_file, encoding="utf-8") as f1:
|
| 719 |
-
for row in f1:
|
| 720 |
-
source_sentences.append(row)
|
| 721 |
-
with open(target_file, encoding="utf-8") as f2:
|
| 722 |
-
for row in f2:
|
| 723 |
-
target_sentences.append(row)
|
| 724 |
-
for i in range(len(source_sentences)):
|
| 725 |
-
yield i, {
|
| 726 |
-
"source_sentence": source_sentences[i],
|
| 727 |
-
"target_sentence": target_sentences[i],
|
| 728 |
-
"source_lang": source_file.split(".")[-1],
|
| 729 |
-
"target_lang": "eng",
|
| 730 |
-
}
|
| 731 |
-
if self.config.name.startswith("udpos"):
|
| 732 |
-
yield from UdposParser.generate_examples(config=self.config, filepath=filepath, **kwargs)
|
| 733 |
-
if self.config.name.startswith("PAN-X"):
|
| 734 |
-
yield from PanxParser.generate_examples(filepath=filepath, **kwargs)
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
class PanxParser:
|
| 738 |
-
|
| 739 |
-
features = datasets.Features(
|
| 740 |
-
{
|
| 741 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 742 |
-
"ner_tags": datasets.Sequence(
|
| 743 |
-
datasets.features.ClassLabel(
|
| 744 |
-
names=[
|
| 745 |
-
"O",
|
| 746 |
-
"B-PER",
|
| 747 |
-
"I-PER",
|
| 748 |
-
"B-ORG",
|
| 749 |
-
"I-ORG",
|
| 750 |
-
"B-LOC",
|
| 751 |
-
"I-LOC",
|
| 752 |
-
]
|
| 753 |
-
)
|
| 754 |
-
),
|
| 755 |
-
"langs": datasets.Sequence(datasets.Value("string")),
|
| 756 |
-
}
|
| 757 |
-
)
|
| 758 |
-
|
| 759 |
-
@staticmethod
|
| 760 |
-
def split_generators(dl_manager=None, config=None):
|
| 761 |
-
data_dir = dl_manager.download_and_extract(config.data_url)
|
| 762 |
-
lang = config.name.split(".")[1]
|
| 763 |
-
archive = os.path.join(data_dir, lang + ".tar.gz")
|
| 764 |
-
split_filenames = {
|
| 765 |
-
datasets.Split.TRAIN: "train",
|
| 766 |
-
datasets.Split.VALIDATION: "dev",
|
| 767 |
-
datasets.Split.TEST: "test",
|
| 768 |
-
}
|
| 769 |
-
return [
|
| 770 |
-
datasets.SplitGenerator(
|
| 771 |
-
name=split,
|
| 772 |
-
gen_kwargs={
|
| 773 |
-
"filepath": dl_manager.iter_archive(archive),
|
| 774 |
-
"filename": split_filenames[split],
|
| 775 |
-
},
|
| 776 |
-
)
|
| 777 |
-
for split in split_filenames
|
| 778 |
-
]
|
| 779 |
-
|
| 780 |
-
@staticmethod
|
| 781 |
-
def generate_examples(filepath=None, filename=None):
|
| 782 |
-
idx = 1
|
| 783 |
-
for path, file in filepath:
|
| 784 |
-
if path.endswith(filename):
|
| 785 |
-
tokens = []
|
| 786 |
-
ner_tags = []
|
| 787 |
-
langs = []
|
| 788 |
-
for line in file:
|
| 789 |
-
line = line.decode("utf-8")
|
| 790 |
-
if line == "" or line == "\n":
|
| 791 |
-
if tokens:
|
| 792 |
-
yield idx, {
|
| 793 |
-
"tokens": tokens,
|
| 794 |
-
"ner_tags": ner_tags,
|
| 795 |
-
"langs": langs,
|
| 796 |
-
}
|
| 797 |
-
idx += 1
|
| 798 |
-
tokens = []
|
| 799 |
-
ner_tags = []
|
| 800 |
-
langs = []
|
| 801 |
-
else:
|
| 802 |
-
# pan-x data is tab separated
|
| 803 |
-
splits = line.split("\t")
|
| 804 |
-
# strip out en: prefix
|
| 805 |
-
langs.append(splits[0][:2])
|
| 806 |
-
tokens.append(splits[0][3:])
|
| 807 |
-
if len(splits) > 1:
|
| 808 |
-
ner_tags.append(splits[-1].replace("\n", ""))
|
| 809 |
-
else:
|
| 810 |
-
# examples have no label in test set
|
| 811 |
-
ner_tags.append("O")
|
| 812 |
-
if tokens:
|
| 813 |
-
yield idx, {
|
| 814 |
-
"tokens": tokens,
|
| 815 |
-
"ner_tags": ner_tags,
|
| 816 |
-
"langs": langs,
|
| 817 |
-
}
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
class PawsxParser:
|
| 821 |
-
|
| 822 |
-
features = datasets.Features(
|
| 823 |
-
{
|
| 824 |
-
"sentence1": datasets.Value("string"),
|
| 825 |
-
"sentence2": datasets.Value("string"),
|
| 826 |
-
"label": datasets.Value("string"),
|
| 827 |
-
}
|
| 828 |
-
)
|
| 829 |
-
|
| 830 |
-
@staticmethod
|
| 831 |
-
def split_generators(dl_manager=None, config=None):
|
| 832 |
-
lang = config.name.split(".")[1]
|
| 833 |
-
archive = dl_manager.download(config.data_url)
|
| 834 |
-
split_filenames = {
|
| 835 |
-
datasets.Split.TRAIN: "translated_train.tsv" if lang != "en" else "train.tsv",
|
| 836 |
-
datasets.Split.VALIDATION: "dev_2k.tsv",
|
| 837 |
-
datasets.Split.TEST: "test_2k.tsv",
|
| 838 |
-
}
|
| 839 |
-
return [
|
| 840 |
-
datasets.SplitGenerator(
|
| 841 |
-
name=split,
|
| 842 |
-
gen_kwargs={"filepath": dl_manager.iter_archive(archive), "filename": split_filenames[split]},
|
| 843 |
-
)
|
| 844 |
-
for split in split_filenames
|
| 845 |
-
]
|
| 846 |
-
|
| 847 |
-
@staticmethod
|
| 848 |
-
def generate_examples(config=None, filepath=None, filename=None):
|
| 849 |
-
lang = config.name.split(".")[1]
|
| 850 |
-
for path, file in filepath:
|
| 851 |
-
if f"/{lang}/" in path and path.endswith(filename):
|
| 852 |
-
lines = (line.decode("utf-8") for line in file)
|
| 853 |
-
data = csv.reader(lines, delimiter="\t")
|
| 854 |
-
next(data) # skip header
|
| 855 |
-
for id_, row in enumerate(data):
|
| 856 |
-
if len(row) == 4:
|
| 857 |
-
yield id_, {
|
| 858 |
-
"sentence1": row[1],
|
| 859 |
-
"sentence2": row[2],
|
| 860 |
-
"label": row[3],
|
| 861 |
-
}
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
class UdposParser:
|
| 865 |
-
|
| 866 |
-
features = datasets.Features(
|
| 867 |
-
{
|
| 868 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 869 |
-
"pos_tags": datasets.Sequence(
|
| 870 |
-
datasets.features.ClassLabel(
|
| 871 |
-
names=[
|
| 872 |
-
"ADJ",
|
| 873 |
-
"ADP",
|
| 874 |
-
"ADV",
|
| 875 |
-
"AUX",
|
| 876 |
-
"CCONJ",
|
| 877 |
-
"DET",
|
| 878 |
-
"INTJ",
|
| 879 |
-
"NOUN",
|
| 880 |
-
"NUM",
|
| 881 |
-
"PART",
|
| 882 |
-
"PRON",
|
| 883 |
-
"PROPN",
|
| 884 |
-
"PUNCT",
|
| 885 |
-
"SCONJ",
|
| 886 |
-
"SYM",
|
| 887 |
-
"VERB",
|
| 888 |
-
"X",
|
| 889 |
-
]
|
| 890 |
-
)
|
| 891 |
-
),
|
| 892 |
-
}
|
| 893 |
-
)
|
| 894 |
-
|
| 895 |
-
@staticmethod
|
| 896 |
-
def split_generators(dl_manager=None, config=None):
|
| 897 |
-
archive = dl_manager.download(config.data_url)
|
| 898 |
-
split_names = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev", datasets.Split.TEST: "test"}
|
| 899 |
-
split_generators = {
|
| 900 |
-
split: datasets.SplitGenerator(
|
| 901 |
-
name=split,
|
| 902 |
-
gen_kwargs={
|
| 903 |
-
"filepath": dl_manager.iter_archive(archive),
|
| 904 |
-
"split": split_names[split],
|
| 905 |
-
},
|
| 906 |
-
)
|
| 907 |
-
for split in split_names
|
| 908 |
-
}
|
| 909 |
-
lang = config.name.split(".")[1]
|
| 910 |
-
if lang in ["Tagalog", "Thai", "Yoruba"]:
|
| 911 |
-
return [split_generators["test"]]
|
| 912 |
-
elif lang == "Kazakh":
|
| 913 |
-
return [split_generators["train"], split_generators["test"]]
|
| 914 |
-
else:
|
| 915 |
-
return [split_generators["train"], split_generators["validation"], split_generators["test"]]
|
| 916 |
-
|
| 917 |
-
@staticmethod
|
| 918 |
-
def generate_examples(config=None, filepath=None, split=None):
|
| 919 |
-
lang = config.name.split(".")[1]
|
| 920 |
-
idx = 0
|
| 921 |
-
for path, file in filepath:
|
| 922 |
-
if f"_{lang}" in path and split in path and path.endswith(".conllu"):
|
| 923 |
-
# For lang other than [see below], we exclude Arabic-NYUAD which does not contains any words, only _
|
| 924 |
-
if lang in ["Kazakh", "Tagalog", "Thai", "Yoruba"] or "NYUAD" not in path:
|
| 925 |
-
lines = (line.decode("utf-8") for line in file)
|
| 926 |
-
data = csv.reader(lines, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 927 |
-
tokens = []
|
| 928 |
-
pos_tags = []
|
| 929 |
-
for id_row, row in enumerate(data):
|
| 930 |
-
if len(row) >= 10 and row[1] != "_" and row[3] != "_":
|
| 931 |
-
tokens.append(row[1])
|
| 932 |
-
pos_tags.append(row[3])
|
| 933 |
-
if len(row) == 0 and len(tokens) > 0:
|
| 934 |
-
yield idx, {
|
| 935 |
-
"tokens": tokens,
|
| 936 |
-
"pos_tags": pos_tags,
|
| 937 |
-
}
|
| 938 |
-
idx += 1
|
| 939 |
-
tokens = []
|
| 940 |
-
pos_tags = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|