Datasets:
File size: 3,575 Bytes
46fecf9 cac242e 46fecf9 cac242e cb273c4 cac242e fdfff01 cb273c4 fdfff01 7703afe ec0e7b3 7703afe ec0e7b3 fdfff01 c172a32 b42b844 fdfff01 3c4cc82 fdfff01 3c4cc82 7a37a13 695d7b8 e900c60 695d7b8 e900c60 57dcd55 42257ce 1ac3f7d eca3726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
license: cc-by-nc-sa-4.0
task_categories:
- feature-extraction
language:
- en
tags:
- deepfake-detection
- face-generation
- ai-safety
- trust-and-safety
pretty_name: ScaleDF
size_categories:
- 10M<n<100M
---
# Summary
This is the dataset proposed in our paper [**Scaling Laws for Deepfake Detection**](https://arxiv.org/abs/2510.16320).
<p align="center">
<img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/teasor.png" width="800">
</p>
ScaleDF is the largest dataset in the deepfake detection domain to date. It contains over 5.8 million real images from 51 different datasets (domains) and more than 8.8 million fake images generated by 102 deepfake methods.
Using ScaleDF, we observe power-law scaling similar to that shown in large language models (LLMs). Specifically, the average detection error follows a predictable power-law decay as either the number of real domains or the number of deepfake methods increases.
# Directory
```
*DATA_PATH
*ScaleDF
*train
000000AFAD.tar # The tar files starting with 000000 contain real faces.
000000AVA.tar
...
AMatrix_faces.tar # The tar files starting without 000000 contain fake faces.
AniPortrait_faces.tar
...
*val
000000300VW.tar # The tar files starting with 000000 contain real faces.
000000GENKI-4K.tar
...
3dSwap_faces.tar # The tar files starting without 000000 contain fake faces.
DiffFace_faces.tar
...
*unprocessed_fake
3dswap_output_v2.tar # The tar files contain unprocessed fake images or videos. We release unprocessed ones for FS, FR, FE, and TF (except FF, which is too large).
AMatrix_output_v2.tar
...
*Established_benchmarks
*CDFv2.tar
*DF40.tar
*DeepFakeDetection.tar
*DeepFakeFace.tar
*ForgeryNet.tar
*Wild_Deepfake.tar
*ScaleDF.tar # We also adapt the ScaleDF validation set format to other established benchmarks and provide the adapted version here.
```
# Download
## Automatic
```python
from huggingface_hub import snapshot_download
local_dir = snapshot_download(
repo_id="WenhaoWang/ScaleDF",
repo_type="dataset"
)
```
## Manually
```
wget https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/ScaleDF/train/000000AFAD.tar # This is an example.
```
# Compared to existing datasets
<p align="center">
<img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/compare.png" width="800">
</p>
# Observed scaling laws
<p align="center">
<img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/scaling_laws.png" width="800">
</p>
# Included real datasets
<p align="center">
<img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/real_dataset.png" width="800">
</p>
# Included deepfake methods
<p align="center">
<img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/fake_method.png" width="800">
</p>
# License
Our ScaleDF is released under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
# Citation
```
@article{wang2025scaling,
title={Scaling Laws for Deepfake Detection},
author={Wang, Wenhao and Cai, Longqi and Xiao, Taihong and Wang, Yuxiao and Yang, Ming-Hsuan},
journal={arXiv preprint arXiv:2510.16320},
year={2025}
}
```
# Contact
If you have any questions, feel free to contact Wenhao Wang ([email protected]).
|