File size: 3,575 Bytes
46fecf9
 
cac242e
 
 
 
 
 
 
 
 
 
 
 
46fecf9
cac242e
 
 
cb273c4
 
 
cac242e
 
fdfff01
cb273c4
fdfff01
 
 
 
 
 
7703afe
 
ec0e7b3
7703afe
ec0e7b3
 
fdfff01
c172a32
 
 
 
 
 
b42b844
 
 
 
fdfff01
3c4cc82
 
fdfff01
 
3c4cc82
 
7a37a13
695d7b8
 
 
 
 
 
 
 
 
 
 
 
 
 
e900c60
695d7b8
 
 
e900c60
57dcd55
 
 
 
 
 
 
42257ce
 
 
 
 
 
1ac3f7d
 
 
 
 
 
 
 
 
 
 
 
eca3726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: cc-by-nc-sa-4.0
task_categories:
- feature-extraction
language:
- en
tags:
- deepfake-detection
- face-generation
- ai-safety
- trust-and-safety
pretty_name: ScaleDF
size_categories:
- 10M<n<100M
---

# Summary
This is the dataset proposed in our paper [**Scaling Laws for Deepfake Detection**](https://arxiv.org/abs/2510.16320). 
<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/teasor.png" width="800">
</p>

ScaleDF is the largest dataset in the deepfake detection domain to date. It contains over 5.8 million real images from 51 different datasets (domains) and more than 8.8 million fake images generated by 102 deepfake methods. 

Using ScaleDF, we observe power-law scaling similar to that shown in large language models (LLMs). Specifically, the average detection error follows a predictable power-law decay as either the number of real domains or the number of deepfake methods increases. 

# Directory
```
*DATA_PATH
    *ScaleDF
		*train
            000000AFAD.tar # The tar files starting with 000000 contain real faces.
            000000AVA.tar 
            ...
            AMatrix_faces.tar # The tar files starting without 000000 contain fake faces.
            AniPortrait_faces.tar
            ...
		*val
            000000300VW.tar # The tar files starting with 000000 contain real faces.
            000000GENKI-4K.tar
            ...
            3dSwap_faces.tar # The tar files starting without 000000 contain fake faces.
            DiffFace_faces.tar
            ...
        *unprocessed_fake
            3dswap_output_v2.tar # The tar files contain unprocessed fake images or videos. We release unprocessed ones for FS, FR, FE, and TF (except FF, which is too large).
            AMatrix_output_v2.tar
            ...
	*Established_benchmarks
		*CDFv2.tar
		*DF40.tar
		*DeepFakeDetection.tar
        *DeepFakeFace.tar
        *ForgeryNet.tar
        *Wild_Deepfake.tar
        *ScaleDF.tar # We also adapt the ScaleDF validation set format to other established benchmarks and provide the adapted version here.
```

# Download

## Automatic

```python
from huggingface_hub import snapshot_download

local_dir = snapshot_download(
    repo_id="WenhaoWang/ScaleDF",
    repo_type="dataset"
)
```

## Manually

```
wget https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/ScaleDF/train/000000AFAD.tar # This is an example.
```


# Compared to existing datasets
<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/compare.png" width="800">
</p>

# Observed scaling laws

<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/scaling_laws.png" width="800">
</p>

# Included real datasets

<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/real_dataset.png" width="800">
</p>

# Included deepfake methods

<p align="center">
  <img src="https://huggingface.co/datasets/WenhaoWang/ScaleDF/resolve/main/assets/fake_method.png" width="800">
</p>


# License

Our ScaleDF is released under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). 

# Citation
```
@article{wang2025scaling,
  title={Scaling Laws for Deepfake Detection},
  author={Wang, Wenhao and Cai, Longqi and Xiao, Taihong and Wang, Yuxiao and Yang, Ming-Hsuan},
  journal={arXiv preprint arXiv:2510.16320},
  year={2025}
}
```

# Contact

If you have any questions, feel free to contact Wenhao Wang ([email protected]).