Ved100 commited on
Commit
59cf334
·
verified ·
1 Parent(s): 70535bb

Add comprehensive dataset card

Browse files
Files changed (1) hide show
  1. README.md +327 -0
README.md ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - other
5
+ pretty_name: PreGen Navier-Stokes 2D Dataset
6
+ size_categories:
7
+ - 100K<n<1M
8
+ tags:
9
+ - physics
10
+ - fluid-dynamics
11
+ - navier-stokes
12
+ - pde
13
+ - scientific-computing
14
+ - neural-operators
15
+ - foundation-models
16
+ - difficulty-transfer
17
+ - reynolds-number
18
+ - openfoam
19
+ ---
20
+
21
+ # PreGen Navier-Stokes 2D Dataset
22
+
23
+ ## Dataset Description
24
+
25
+ This dataset accompanies the research paper **"Pre-Generating Multi-Difficulty PDE Data For Few-Shot Neural PDE Solvers"** (under review at ICLR 2026). It contains systematically generated 2D incompressible Navier-Stokes fluid flow simulations designed to study **difficulty transfer** in neural PDE solvers.
26
+
27
+ The key insight: by pre-generating many low and medium difficulty examples and including them with a small number of hard examples, neural PDE solvers can learn high-difficulty physics from far fewer samples. This dataset enables **8.9× reduction in compute time** while achieving comparable performance.
28
+
29
+ ### Dataset Summary
30
+
31
+ - **Total Size:** ~421 GB
32
+ - **Format:** NumPy arrays (.npy files)
33
+ - **Number of Files:** 9
34
+ - **Simulations per file:** 6,400 trajectories
35
+ - **Timesteps:** 20 per trajectory
36
+ - **Spatial Resolution:** 128 × 128 grid
37
+ - **Solver:** OpenFOAM (icoFoam)
38
+ - **Domain:** 2D Incompressible Navier-Stokes equations
39
+
40
+ ### Problem Setting
41
+
42
+ The dataset solves the 2D incompressible Navier-Stokes equations:
43
+
44
+ ```
45
+ ∂u/∂t + (u · ∇)u + ∇p = ν∆u
46
+ ∇ · u = 0
47
+ ```
48
+
49
+ where:
50
+ - `u(x,t)` is the velocity field
51
+ - `p(x,t)` is the kinematic pressure
52
+ - `ν` is the kinematic viscosity (1.5 × 10⁻⁵ m²/s)
53
+ - Domain: Ω ⊂ [0,1]²
54
+
55
+ ## Difficulty Axes
56
+
57
+ The dataset systematically varies complexity along three axes:
58
+
59
+ ### 1. **Geometry Axis** (Number of Obstacles)
60
+ Simulations in flow-past-object (FPO) configuration with varying obstacle complexity:
61
+
62
+ - **Easy:** No obstacles (open channel flow)
63
+ - **Medium:** Single square obstacle
64
+ - **Hard:** 2-10 randomly placed square obstacles
65
+
66
+ **Files:**
67
+ - `Geometry_Axis/FPO_Geometry_Easy_NoObstacle.npy` (47 GB)
68
+ - `Geometry_Axis/FPO_Geometry_Medium_SingleObstacle.npy` (47 GB)
69
+ - `Geometry_Axis/FPO_Geometry_Hard_MultiObstacle.npy` (47 GB)
70
+
71
+ ### 2. **Physics Axis** (Reynolds Number)
72
+ Simulations with varying flow complexity via Reynolds number:
73
+
74
+ **Multi-Obstacle Flows:**
75
+ - **Easy:** Re ∈ [100, 1000] - laminar regime
76
+ - **Medium:** Re ∈ [2000, 4000] - transitional regime
77
+ - **Hard:** Re ∈ [8000, 10000] - turbulent regime
78
+
79
+ **Files:**
80
+ - `Physics_Axis/MultiObstacle/FPO_Physics_MultiObstacle_Easy_Re100-1000.npy` (47 GB)
81
+ - `Physics_Axis/MultiObstacle/FPO_Physics_MultiObstacle_Medium_Re2000-4000.npy` (47 GB)
82
+ - `Physics_Axis/MultiObstacle/FPO_Physics_MultiObstacle_Hard_Re8000-10000.npy` (47 GB)
83
+
84
+ **No-Obstacle Flows:**
85
+ - `Physics_Axis/NoObstacle/FPO_Physics_NoObstacle_Easy_Re100-1000.npy` (47 GB)
86
+
87
+ ### 3. **Combined Axis** (Geometry + Physics)
88
+ Combined variations in both geometry and Reynolds number:
89
+
90
+ - **Easy:** No obstacles + low Re ([100, 1000])
91
+ - **Medium:** Single obstacle + medium Re ([2000, 4000])
92
+ - **Hard:** Multiple obstacles + high Re ([8000, 10000])
93
+
94
+ **File:**
95
+ - `Combined_Axis/FPO_Combined_Medium_SingleObstacle_MedRe.npy` (47 GB)
96
+
97
+ ### 4. **Special Configuration**
98
+ - `Special/FPO_Cylinder_Hole_Location_6284.npy` (47 GB) - Cylinder with hole at specific location
99
+
100
+ ## Data Format
101
+
102
+ Each `.npy` file contains a NumPy array with shape: `(6400, 20, 128, 128, 6)`
103
+
104
+ **Dimensions:**
105
+ - **6400**: Number of simulation trajectories
106
+ - **20**: Timesteps per trajectory
107
+ - **128 × 128**: Spatial grid resolution
108
+ - **6**: Channels (features)
109
+
110
+ **Channels (in order):**
111
+ 1. **u** - Horizontal velocity component (m/s)
112
+ 2. **v** - Vertical velocity component (m/s)
113
+ 3. **p** - Kinematic pressure (m²/s²)
114
+ 4. **Re_normalized** - Normalized Reynolds number
115
+ 5. **Binary mask** - Geometry encoding (1 = obstacle, 0 = fluid)
116
+ 6. **SDF** - Signed distance field to nearest obstacle boundary
117
+
118
+ ## Simulation Details
119
+
120
+ ### Boundary Conditions
121
+
122
+ **Flow Past Object (FPO):**
123
+ - **Left (inlet):** Parabolic velocity profile with peak velocity Umax
124
+ - **Right (outlet):** Zero-gradient pressure outlet
125
+ - **Top/Bottom:** No-slip walls (u = 0)
126
+ - **Obstacles:** No-slip walls (u = 0)
127
+
128
+ ### Reynolds Number Sampling
129
+ Re is sampled from a truncated Gaussian distribution N(5000, 2000²) with support [100, 10000]. The inlet velocity is scaled to achieve the target Re:
130
+
131
+ ```
132
+ Re = (U_avg × L) / ν
133
+ U_avg = (2/3) × U_max
134
+ ```
135
+
136
+ ### Time Integration
137
+ - **Scheme:** Backward Euler (1st order implicit)
138
+ - **Spatial discretization:** Finite volume method
139
+ - **Gradient terms:** Gauss linear (central differencing)
140
+ - **Convection:** Gauss linearUpwind with gradient reconstruction
141
+ - **Diffusion:** Gauss linear orthogonal
142
+
143
+ ### Simulation Duration
144
+ Adaptive time scheduling based on Reynolds number to ensure flow development:
145
+ - **Low Re (10-100):** Fixed 2700s
146
+ - **Medium Re (100-1000):** 1-10× characteristic diffusion time
147
+ - **High Re (1000-10000):** 10-40× characteristic diffusion time
148
+
149
+ ### Computational Cost
150
+ The harder the simulation, the more expensive to generate:
151
+
152
+ | Configuration | Average Time (seconds) |
153
+ |--------------|----------------------|
154
+ | No obstacle, Low Re | 176.7 |
155
+ | No obstacle, Medium Re | 261.1 |
156
+ | No obstacle, High Re | 350.4 |
157
+ | One obstacle, Low Re | 609.5 |
158
+ | One obstacle, Medium Re | 731.1 |
159
+ | One obstacle, High Re | 942.8 |
160
+ | Multiple obstacles, Low Re | 1550.9 |
161
+ | Multiple obstacles, Medium Re | 1599.2 |
162
+ | Multiple obstacles, High Re | 1653.3 |
163
+
164
+ ## Key Research Findings
165
+
166
+ This dataset was specifically designed to study **difficulty transfer** in neural PDE solvers:
167
+
168
+ 1. **Sample Efficiency**: Training on 10% hard data + 90% easy/medium data recovers ~96-98% of the performance of training on 100% hard data
169
+
170
+ 2. **Compute Efficiency**: By mixing difficulties optimally, you can achieve the same error with **8.9× less compute** spent on data generation
171
+
172
+ 3. **Medium > Easy**: For most budgets, generating fewer medium-difficulty examples outperforms generating more easy examples
173
+
174
+ 4. **Foundation Dataset Potential**: Medium-difficulty data (single obstacle) improves few-shot performance on complex geometries (NURBS shapes from FlowBench)
175
+
176
+ ## Usage
177
+
178
+ ### Basic Loading
179
+
180
+ ```python
181
+ import numpy as np
182
+ from huggingface_hub import hf_hub_download
183
+
184
+ # Download a specific difficulty level
185
+ file_path = hf_hub_download(
186
+ repo_id="sage-lab/PreGen-NavierStokes-2D",
187
+ filename="Geometry_Axis/FPO_Geometry_Easy_NoObstacle.npy",
188
+ repo_type="dataset"
189
+ )
190
+
191
+ # Load the data
192
+ data = np.load(file_path)
193
+ print(f"Data shape: {data.shape}") # (6400, 20, 128, 128, 6)
194
+
195
+ # Extract individual trajectories
196
+ trajectory_0 = data[0] # Shape: (20, 128, 128, 6)
197
+
198
+ # Extract velocity and pressure
199
+ u = trajectory_0[:, :, :, 0] # Horizontal velocity
200
+ v = trajectory_0[:, :, :, 1] # Vertical velocity
201
+ p = trajectory_0[:, :, :, 2] # Pressure
202
+ mask = trajectory_0[:, :, :, 4] # Binary geometry mask
203
+ sdf = trajectory_0[:, :, :, 5] # Signed distance field
204
+ ```
205
+
206
+ ### Difficulty Mixing for Training
207
+
208
+ ```python
209
+ import numpy as np
210
+ from huggingface_hub import hf_hub_download
211
+
212
+ # Load different difficulty levels
213
+ easy_data = np.load(hf_hub_download(
214
+ repo_id="sage-lab/PreGen-NavierStokes-2D",
215
+ filename="Geometry_Axis/FPO_Geometry_Easy_NoObstacle.npy",
216
+ repo_type="dataset"
217
+ ))
218
+
219
+ medium_data = np.load(hf_hub_download(
220
+ repo_id="sage-lab/PreGen-NavierStokes-2D",
221
+ filename="Geometry_Axis/FPO_Geometry_Medium_SingleObstacle.npy",
222
+ repo_type="dataset"
223
+ ))
224
+
225
+ hard_data = np.load(hf_hub_download(
226
+ repo_id="sage-lab/PreGen-NavierStokes-2D",
227
+ filename="Geometry_Axis/FPO_Geometry_Hard_MultiObstacle.npy",
228
+ repo_type="dataset"
229
+ ))
230
+
231
+ # Recommended: Use 10% hard + 90% medium for cost-effective training
232
+ n_hard = 80
233
+ n_medium = 720
234
+
235
+ train_data = np.concatenate([
236
+ hard_data[:n_hard],
237
+ medium_data[:n_medium]
238
+ ], axis=0)
239
+
240
+ # Hold out 100 hard examples for testing
241
+ test_data = hard_data[-100:]
242
+ ```
243
+
244
+ ### Computing Metrics
245
+
246
+ ```python
247
+ def compute_nmae(y_true, y_pred):
248
+ """
249
+ Compute normalized Mean Absolute Error (nMAE)
250
+ as used in the paper.
251
+
252
+ Args:
253
+ y_true: Ground truth, shape (N, T, H, W, C)
254
+ y_pred: Predictions, shape (N, T, H, W, C)
255
+
256
+ Returns:
257
+ nMAE: Normalized mean absolute error
258
+ """
259
+ numerator = np.abs(y_true - y_pred).sum()
260
+ denominator = np.abs(y_true).sum()
261
+ return numerator / (denominator + 1e-10)
262
+ ```
263
+
264
+ ## Tested Models
265
+
266
+ The paper evaluates this dataset on:
267
+
268
+ ### Supervised Neural Operators (trained from scratch)
269
+ - **CNO** (Convolutional Neural Operator) - 18M parameters
270
+ - **F-FNO** (Factorized Fourier Neural Operator) - 5-layer
271
+
272
+ ### Foundation Models (fine-tuned)
273
+ - **Poseidon-T** (Tiny) - 21M parameters
274
+ - **Poseidon-B** (Base) - 158M parameters
275
+ - **Poseidon-L** (Large) - 629M parameters
276
+
277
+ All models are trained autoregressively with one-step-ahead prediction (t → t+1) using relative L1 loss.
278
+
279
+ ## Citation
280
+
281
+ If you use this dataset, please cite:
282
+
283
+ ```bibtex
284
+ @inproceedings{pregen2026,
285
+ title={Pre-Generating Multi-Difficulty {PDE} Data For Few-Shot Neural {PDE} Solvers},
286
+ author={Anonymous},
287
+ booktitle={Under review at International Conference on Learning Representations (ICLR)},
288
+ year={2026},
289
+ url={https://openreview.net}
290
+ }
291
+ ```
292
+
293
+ **Note:** Citation will be updated once the paper is published.
294
+
295
+ ## Related Datasets
296
+
297
+ - **The Well** - Large-scale multi-physics PDE dataset
298
+ - **PDEBench** - Benchmark for scientific machine learning
299
+ - **FlowBench** - Flow simulation over complex geometries (NURBS shapes)
300
+
301
+ ## License
302
+
303
+ MIT License
304
+
305
+ ## Acknowledgments
306
+
307
+ This dataset was generated using:
308
+ - **OpenFOAM** (v2406) for CFD simulations
309
+ - Simulations performed on computational clusters
310
+ - Total compute time: Several thousand GPU/CPU hours
311
+
312
+ ## Contact
313
+
314
+ For questions or issues:
315
+ - Open an issue in the dataset repository
316
+ - Contact the sage-lab organization on Hugging Face
317
+ - See the paper for additional contact information (once published)
318
+
319
+ ## Dataset Maintainers
320
+
321
+ sage-lab organization
322
+
323
+ ---
324
+
325
+ **Dataset Version:** 1.0
326
+ **Last Updated:** 2024
327
+ **Status:** Research dataset under peer review