CyberDJ commited on
Commit
b432f0c
·
verified ·
1 Parent(s): 6a83b17

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -3
README.md CHANGED
@@ -1,3 +1,100 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Datacard
2
+ This dataset is the evaluation VLM dataset used in VLABench. It is designed to evaluate the planning capabilities of Vision-Language Models (VLMs) in embodied scenarios.
3
+
4
+ ## Source
5
+ - Project Page: [https://vlabench.github.io/](https://vlabench.github.io/)
6
+ - Arxiv Paper: [https://arxiv.org/abs/2412.18194](https://arxiv.org/abs/2412.18194)
7
+ - Code: [https://github.com/OpenMOSS/VLABench](https://github.com/OpenMOSS/VLABench)
8
+
9
+ ## Uses
10
+
11
+ The dataset structure is as follows:
12
+ ```
13
+ vlm_evaluation_v1.0/
14
+ ├── CommenSence/
15
+ ├── add_condiment_common_sense/
16
+ ├── insert_flower_common_sense/
17
+ ├── select_billiards_common_sense/
18
+ ├── select_chemistry_tube_common_sense/
19
+ ├── select_drink_common_sense/
20
+ ├── select_fruit_common_sense/
21
+ ├── select_nth_largest_poker/
22
+ └── select_toy_common_sense/
23
+ ├── Complex/
24
+ ├── book_rearrange/
25
+ ├── cook_dishes/
26
+ ├── hammer_nail_and_hang_picture/
27
+ ├── take_chemistry_experiment/
28
+ └── texas_holdem/
29
+ ├── M&T/
30
+ ├── add_condiment/
31
+ ├── insert_flower/
32
+ ├── select_billiards/
33
+ ├── select_book/
34
+ ├── select_chemistry_tube/
35
+ ├── select_drink/
36
+ ├── select_fruit/
37
+ ├── select_poker/
38
+ └── select_toy/
39
+ ├── PhysicsLaw/
40
+ ├── density_qa/
41
+ ├── friction_qa/
42
+ ├── magnetism_qa/
43
+ ├── reflection_qa/
44
+ ├── speed_of_sound_qa/
45
+ └── thermal_expansion_qa/
46
+ ├── Semantic/
47
+ ├── add_condiment_semantic/
48
+ ├── insert_flower_semantic/
49
+ ├── select_billiards_semantic/
50
+ ├── select_book_semantic/
51
+ ├── select_chemistry_tube_semantic/
52
+ ├── select_drink_semantic/
53
+ ├── select_fruit_semantic/
54
+ ├── select_poker_semantic/
55
+ └── select_toy_semantic/
56
+ ├── Spatial/
57
+ ├── add_condiment_spatial/
58
+ ├── insert_bloom_flower/
59
+ ├── select_billiards_spatial/
60
+ ├── select_book_spatial/
61
+ ├── select_chemistry_tube_spatial/
62
+ ├── select_fruit_spatial/
63
+ ├── select_poker_spatial/
64
+ └── select_toy_spatial/
65
+ ```
66
+ In each subtask, there are 100 episodes of data, such as:
67
+ ```
68
+ vlm_evaluation_v1.0/
69
+ ├── CommenSence/
70
+ └── add_condiment_common_sense/
71
+ ├── example0
72
+ ├── env_config
73
+ ├── input
74
+ └── output
75
+
76
+ ├── ...
77
+ └── example99
78
+ ```
79
+
80
+ The `env_config` folder includes the episode_config for conveniently reproducing the evaluation environment.
81
+ The `input` folder includes the stacked four-view images and their segmentated visual prompted images as the visual input to VLMs, as well as the instruction to descripe the task.
82
+ The `output` folder includes the ground truth action sequence JSON file.
83
+
84
+ ## Evaluate
85
+
86
+ To evaluate the dataset, please refer to our evaluation guidance in [repo](https://github.com/OpenMOSS/VLABench).
87
+
88
+ ## Citation
89
+ If you find our work helps,please cite us:
90
+ ```
91
+ @misc{zhang2024vlabench,
92
+ title={VLABench: A Large-Scale Benchmark for Language-Conditioned Robotics Manipulation with Long-Horizon Reasoning Tasks},
93
+ author={Shiduo Zhang and Zhe Xu and Peiju Liu and Xiaopeng Yu and Yuan Li and Qinghui Gao and Zhaoye Fei and Zhangyue Yin and Zuxuan Wu and Yu-Gang Jiang and Xipeng Qiu},
94
+ year={2024},
95
+ eprint={2412.18194},
96
+ archivePrefix={arXiv},
97
+ primaryClass={cs.RO},
98
+ url={https://arxiv.org/abs/2412.18194},
99
+ }
100
+ ```