Create README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,100 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Datacard
|
| 2 |
+
This dataset is the evaluation VLM dataset used in VLABench. It is designed to evaluate the planning capabilities of Vision-Language Models (VLMs) in embodied scenarios.
|
| 3 |
+
|
| 4 |
+
## Source
|
| 5 |
+
- Project Page: [https://vlabench.github.io/](https://vlabench.github.io/)
|
| 6 |
+
- Arxiv Paper: [https://arxiv.org/abs/2412.18194](https://arxiv.org/abs/2412.18194)
|
| 7 |
+
- Code: [https://github.com/OpenMOSS/VLABench](https://github.com/OpenMOSS/VLABench)
|
| 8 |
+
|
| 9 |
+
## Uses
|
| 10 |
+
|
| 11 |
+
The dataset structure is as follows:
|
| 12 |
+
```
|
| 13 |
+
vlm_evaluation_v1.0/
|
| 14 |
+
├── CommenSence/
|
| 15 |
+
├── add_condiment_common_sense/
|
| 16 |
+
├── insert_flower_common_sense/
|
| 17 |
+
├── select_billiards_common_sense/
|
| 18 |
+
├── select_chemistry_tube_common_sense/
|
| 19 |
+
├── select_drink_common_sense/
|
| 20 |
+
├── select_fruit_common_sense/
|
| 21 |
+
├── select_nth_largest_poker/
|
| 22 |
+
└── select_toy_common_sense/
|
| 23 |
+
├── Complex/
|
| 24 |
+
├── book_rearrange/
|
| 25 |
+
├── cook_dishes/
|
| 26 |
+
├── hammer_nail_and_hang_picture/
|
| 27 |
+
├── take_chemistry_experiment/
|
| 28 |
+
└── texas_holdem/
|
| 29 |
+
├── M&T/
|
| 30 |
+
├── add_condiment/
|
| 31 |
+
├── insert_flower/
|
| 32 |
+
├── select_billiards/
|
| 33 |
+
├── select_book/
|
| 34 |
+
├── select_chemistry_tube/
|
| 35 |
+
├── select_drink/
|
| 36 |
+
├── select_fruit/
|
| 37 |
+
├── select_poker/
|
| 38 |
+
└── select_toy/
|
| 39 |
+
├── PhysicsLaw/
|
| 40 |
+
├── density_qa/
|
| 41 |
+
├── friction_qa/
|
| 42 |
+
├── magnetism_qa/
|
| 43 |
+
├── reflection_qa/
|
| 44 |
+
├── speed_of_sound_qa/
|
| 45 |
+
└── thermal_expansion_qa/
|
| 46 |
+
├── Semantic/
|
| 47 |
+
├── add_condiment_semantic/
|
| 48 |
+
├── insert_flower_semantic/
|
| 49 |
+
├── select_billiards_semantic/
|
| 50 |
+
├── select_book_semantic/
|
| 51 |
+
├── select_chemistry_tube_semantic/
|
| 52 |
+
├── select_drink_semantic/
|
| 53 |
+
├── select_fruit_semantic/
|
| 54 |
+
├── select_poker_semantic/
|
| 55 |
+
└── select_toy_semantic/
|
| 56 |
+
├── Spatial/
|
| 57 |
+
├── add_condiment_spatial/
|
| 58 |
+
├── insert_bloom_flower/
|
| 59 |
+
├── select_billiards_spatial/
|
| 60 |
+
├── select_book_spatial/
|
| 61 |
+
├── select_chemistry_tube_spatial/
|
| 62 |
+
├── select_fruit_spatial/
|
| 63 |
+
├── select_poker_spatial/
|
| 64 |
+
└── select_toy_spatial/
|
| 65 |
+
```
|
| 66 |
+
In each subtask, there are 100 episodes of data, such as:
|
| 67 |
+
```
|
| 68 |
+
vlm_evaluation_v1.0/
|
| 69 |
+
├── CommenSence/
|
| 70 |
+
└── add_condiment_common_sense/
|
| 71 |
+
├── example0
|
| 72 |
+
├── env_config
|
| 73 |
+
├── input
|
| 74 |
+
└── output
|
| 75 |
+
|
| 76 |
+
├── ...
|
| 77 |
+
└── example99
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
The `env_config` folder includes the episode_config for conveniently reproducing the evaluation environment.
|
| 81 |
+
The `input` folder includes the stacked four-view images and their segmentated visual prompted images as the visual input to VLMs, as well as the instruction to descripe the task.
|
| 82 |
+
The `output` folder includes the ground truth action sequence JSON file.
|
| 83 |
+
|
| 84 |
+
## Evaluate
|
| 85 |
+
|
| 86 |
+
To evaluate the dataset, please refer to our evaluation guidance in [repo](https://github.com/OpenMOSS/VLABench).
|
| 87 |
+
|
| 88 |
+
## Citation
|
| 89 |
+
If you find our work helps,please cite us:
|
| 90 |
+
```
|
| 91 |
+
@misc{zhang2024vlabench,
|
| 92 |
+
title={VLABench: A Large-Scale Benchmark for Language-Conditioned Robotics Manipulation with Long-Horizon Reasoning Tasks},
|
| 93 |
+
author={Shiduo Zhang and Zhe Xu and Peiju Liu and Xiaopeng Yu and Yuan Li and Qinghui Gao and Zhaoye Fei and Zhangyue Yin and Zuxuan Wu and Yu-Gang Jiang and Xipeng Qiu},
|
| 94 |
+
year={2024},
|
| 95 |
+
eprint={2412.18194},
|
| 96 |
+
archivePrefix={arXiv},
|
| 97 |
+
primaryClass={cs.RO},
|
| 98 |
+
url={https://arxiv.org/abs/2412.18194},
|
| 99 |
+
}
|
| 100 |
+
```
|