Ruichen0424 commited on
Commit
506a129
·
1 Parent(s): 3f4f573

Upload Load_Datasets_Example.ipynb

Browse files
Files changed (1) hide show
  1. Load_Datasets_Example.ipynb +104 -0
Load_Datasets_Example.ipynb ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os\n",
10
+ "import torch\n",
11
+ "import numpy as np\n",
12
+ "from torchvision import datasets"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": null,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "dataset_path = '/ssd/Datasets/I2E-ImageNet/'"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": null,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "class I2E_NpzFolder(datasets.DatasetFolder):\n",
31
+ " def __init__(self, root, loader=None, extensions=['npz'], transform=None, target_transform=None, is_valid_file=None, allow_empty=False):\n",
32
+ " super(I2E_NpzFolder, self).__init__(root, loader, extensions, transform, target_transform, is_valid_file, allow_empty)\n",
33
+ "\n",
34
+ " def __getitem__(self, index):\n",
35
+ " path, target = self.samples[index]\n",
36
+ " sample = torch.from_numpy(np.load(path)['arr_0']).float()\n",
37
+ " if self.transform is not None:\n",
38
+ " sample = self.transform(sample)\n",
39
+ " if self.target_transform is not None:\n",
40
+ " target = self.target_transform(target)\n",
41
+ "\n",
42
+ " return sample, target"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": 4,
48
+ "metadata": {},
49
+ "outputs": [
50
+ {
51
+ "name": "stdout",
52
+ "output_type": "stream",
53
+ "text": [
54
+ "len(train_dataset): 1281167, len(val_dataset): 50000\n"
55
+ ]
56
+ }
57
+ ],
58
+ "source": [
59
+ "train_dataset = I2E_NpzFolder(root=os.path.join(dataset_path, 'train'))\n",
60
+ "val_dataset = I2E_NpzFolder(root=os.path.join(dataset_path, 'val'))\n",
61
+ "print(f'len(train_dataset): {len(train_dataset)}, len(val_dataset): {len(val_dataset)}')"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 5,
67
+ "metadata": {},
68
+ "outputs": [
69
+ {
70
+ "name": "stdout",
71
+ "output_type": "stream",
72
+ "text": [
73
+ "img.shape: torch.Size([8, 2, 224, 224]), label: 0\n"
74
+ ]
75
+ }
76
+ ],
77
+ "source": [
78
+ "img, label = train_dataset[0]\n",
79
+ "print(f'img.shape: {img.shape}, label: {label}') # [T=8, p=2, H, W]"
80
+ ]
81
+ }
82
+ ],
83
+ "metadata": {
84
+ "kernelspec": {
85
+ "display_name": "pytorch291",
86
+ "language": "python",
87
+ "name": "python3"
88
+ },
89
+ "language_info": {
90
+ "codemirror_mode": {
91
+ "name": "ipython",
92
+ "version": 3
93
+ },
94
+ "file_extension": ".py",
95
+ "mimetype": "text/x-python",
96
+ "name": "python",
97
+ "nbconvert_exporter": "python",
98
+ "pygments_lexer": "ipython3",
99
+ "version": "3.11.14"
100
+ }
101
+ },
102
+ "nbformat": 4,
103
+ "nbformat_minor": 2
104
+ }