--- dataset_info: features: - name: image_bytes dtype: binary - name: action dtype: string - name: game dtype: string - name: trial_id dtype: int32 - name: frame_idx dtype: int32 - name: image_size dtype: int32 license: mit task_categories: - robotics - reinforcement-learning tags: - atari - vla - vision-language-action - imitation-learning - preprocessed - smolvlm size_categories: - 1M RIGHT ; RIGHT ; FIRE <|action_end|> <|action_start|> LEFT ; LEFT ; LEFT <|action_end|> <|action_start|> NOOP ; UP ; UPFIRE <|action_end|> ``` ## Schema | Field | Type | Description | |-------|------|-------------| | `image_bytes` | bytes | PNG at 384x384 (pre-resized) | | `action` | string | Lumine-style chunked action token | | `game` | string | Game name | | `trial_id` | int | Human player trial number | | `frame_idx` | int | Frame index in trial | | `image_size` | int | Always 384 | ## Usage ```python from datasets import load_dataset from PIL import Image from io import BytesIO # Load preprocessed dataset ds = load_dataset("TESS-Computer/tess-atari-15hz-384", split="train") # Images are already 384x384 - no resizing needed! sample = ds[0] img = Image.open(BytesIO(sample["image_bytes"])) print(img.size) # (384, 384) print(sample["action"]) # <|action_start|> LEFT ; LEFT ; LEFT <|action_end|> ``` ## Training ```bash python scripts/train_v2.py \ --preprocessed TESS-Computer/tess-atari-15hz-384 \ --epochs 3 \ --batch-size 4 \ --grad-accum 32 \ --wandb \ --push-to-hub ``` ## Related - [Raw 15Hz dataset](https://huggingface.co/datasets/TESS-Computer/atari-vla-stage1-15hz) - Original with 160x210 images - [Raw 5Hz dataset](https://huggingface.co/datasets/TESS-Computer/atari-vla-stage1-5hz) - Single action per observation - [TESS-Atari repo](https://github.com/HusseinLezzaik/TESS-Atari) - Training code ## Citation ```bibtex @misc{tessatari2025, title={TESS-Atari: Vision-Language-Action Models for Atari Games}, author={Lezzaik, Hussein}, year={2025}, url={https://github.com/HusseinLezzaik/TESS-Atari} } @misc{atarihead2019, title={Atari-HEAD: Atari Human Eye-Tracking and Demonstration Dataset}, author={Zhang, Ruohan and others}, year={2019}, url={https://zenodo.org/records/3451402} } ```