Datasets:
Tasks:
Image-Text-to-Text
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
License:
| import json | |
| import os | |
| # 文件路径 | |
| json_dir = "/nfs/data3/zhen/Flamingo_jz/jz-icl/VL-ICL/clevr" | |
| query_file = os.path.join(json_dir, "query.json") | |
| support_file = os.path.join(json_dir, "support.json") | |
| # 加载 JSON 数据 | |
| with open(query_file, 'r') as f: | |
| query_data = json.load(f) | |
| with open(support_file, 'r') as f: | |
| support_data = json.load(f) | |
| # 定义一个函数,将数据根据属性种类进行分类并保存为独立的 JSON 文件 | |
| def split_by_attribute(data, base_folder, data_type): | |
| # 创建一个字典来存储不同属性的样本 | |
| attribute_dict = {} | |
| for sample in data: | |
| # 从 question 提取属性类型 | |
| attribute_type, _ = sample["question"].split(": ") | |
| # 将样本按属性类型添加到相应的列表中 | |
| if attribute_type not in attribute_dict: | |
| attribute_dict[attribute_type] = [] | |
| attribute_dict[attribute_type].append(sample) | |
| # 将不同属性的样本分别保存为 JSON 文件 | |
| for attribute_type, samples in attribute_dict.items(): | |
| output_file = os.path.join(base_folder, f"{data_type}_{attribute_type}.json") | |
| with open(output_file, 'w') as f: | |
| json.dump(samples, f, indent=4) | |
| print(f"{data_type} samples for attribute '{attribute_type}' saved to {output_file}") | |
| # 对 query 和 support 数据分别进行分类并保存 | |
| split_by_attribute(query_data, json_dir, "query") | |
| split_by_attribute(support_data, json_dir, "support") | |
| print("文件分类并保存完成。") | |