Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search.""" | |
| import json | |
| import os.path | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @article{pham2022PiC, | |
| title={PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search}, | |
| author={Pham, Thang M and Yoon, Seunghyun and Bui, Trung and Nguyen, Anh}, | |
| journal={arXiv preprint arXiv:2207.09068}, | |
| year={2022} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Phrase in Context is a curated benchmark for phrase understanding and semantic search, consisting of three tasks of increasing difficulty: Phrase Similarity (PS), Phrase Retrieval (PR) and Phrase Sense Disambiguation (PSD). The datasets are annotated by 13 linguistic experts on Upwork and verified by two groups: ~1000 AMT crowdworkers and another set of 5 linguistic experts. PiC benchmark is distributed under CC-BY-NC 4.0. | |
| """ | |
| _HOMEPAGE = "https://phrase-in-context.github.io/" | |
| _LICENSE = "CC-BY-NC-4.0" | |
| _URL = "https://auburn.edu/~tmp0038/PiC/" | |
| _SPLITS = { | |
| "train": "train-hard-v2.0.1.json", | |
| "dev": "dev-hard-v2.0.1.json", | |
| "test": "test-hard-v2.0.1.json", | |
| } | |
| _PS = "PS-hard" | |
| class PSConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Phrase Similarity in PiC.""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for Phrase Similarity in PiC. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(PSConfig, self).__init__(**kwargs) | |
| class PhraseSimilarity(datasets.GeneratorBasedBuilder): | |
| """Phrase Similarity in PiC dataset. Version 2.0.1. Verified PS labels""" | |
| BUILDER_CONFIGS = [ | |
| PSConfig( | |
| name=_PS, | |
| version=datasets.Version("2.0.1"), | |
| description="The PiC Dataset for Phrase Similarity" | |
| ) | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "phrase1": datasets.Value("string"), | |
| "phrase2": datasets.Value("string"), | |
| "sentence1": datasets.Value("string"), | |
| "sentence2": datasets.Value("string"), | |
| "label": datasets.ClassLabel(num_classes=2, names=["negative", "positive"]), | |
| "idx": datasets.Value("int32") | |
| } | |
| ), | |
| # No default supervised_keys (as we have to pass both question and context as input). | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| urls_to_download = { | |
| "train": os.path.join(_URL, self.config.name, _SPLITS["train"]), | |
| "dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]), | |
| "test": os.path.join(_URL, self.config.name, _SPLITS["test"]), | |
| } | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """This function returns the examples in the raw (text) form.""" | |
| logger.info("generating examples from = %s", filepath) | |
| key = 0 | |
| with open(filepath, encoding="utf-8") as f: | |
| pic_ps = json.load(f) | |
| for example in pic_ps["data"]: | |
| yield key, { | |
| "phrase1": example["phrase1"], | |
| "phrase2": example["phrase2"], | |
| "sentence1": example["sentence1"], | |
| "sentence2": example["sentence2"], | |
| "label": example["label"], | |
| "idx": example["idx"] | |
| } | |
| key += 1 | |