from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM import torch app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) model_name = "SkillForge45/CyberFuture-A1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) class ChatRequest(BaseModel): prompt: str max_length: int = 100 @app.post("/chat/") async def chat(request: ChatRequest): try: inputs = tokenizer(request.prompt, return_tensors="pt").to(device) outputs = model.generate( **inputs, max_length=request.max_length, temperature=0.7, do_sample=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"response": response} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)