Text Generation
Transformers
English
Russian
legal
File size: 5,598 Bytes
e618d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from datasets import load_dataset
from transformers import AutoTokenizer
from tqdm import tqdm
import math
import speech_recognition as sr
import pyttsx3

class FullChatDataset(Dataset):
    def __init__(self, dataset_names=["blended_skill_talk", "conv_ai_2", "social_i_qa"], max_length=128):
        self.datasets = []
        
        for name in dataset_names:
            try:
                dataset = load_dataset(name, split="train")
                self.datasets.append(dataset)
            except Exception as e:
                print(f"Failed to load dataset {name}: {e}")
        
        self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.max_length = max_length
        
    def __len__(self):
        return sum(len(d) for d in self.datasets)
    
    def __getitem__(self, idx):
        for dataset in self.datasets:
            if idx < len(dataset):
                item = dataset[idx]
                break
            idx -= len(dataset)
        
        if 'dialog' in item:
            dialog = item['dialog']
        elif 'messages' in item:
            dialog = [msg['text'] for msg in item['messages']]
        else:
            dialog = [v for k, v in item.items() if isinstance(v, str)]
        
        context = " [SEP] ".join(dialog[:-1])
        response = dialog[-1]
        
        inputs = self.tokenizer(
            context,
            text_pair=response,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_tensors="pt"
        )
        
        return {
            'input_ids': inputs['input_ids'].flatten(),
            'attention_mask': inputs['attention_mask'].flatten(),
            'labels': inputs['input_ids'].flatten()
        }

class SimpleTransformerModel(nn.Module):
    def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoder = PositionalEncoding(d_model)
        encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
        self.fc = nn.Linear(d_model, vocab_size)
        
    def forward(self, x, mask=None):
        x = self.embedding(x)
        x = self.pos_encoder(x)
        x = self.transformer(x, mask)
        return self.fc(x)

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=500):
        super().__init__()
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
        pe = torch.zeros(max_len, d_model)
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        return x + self.pe[:x.size(1)]

class VoiceInterface:
    def __init__(self):
        self.recognizer = sr.Recognizer()
        self.engine = pyttsx3.init()
        
    def listen(self):
        with sr.Microphone() as source:
            print("Listening...")
            audio = self.recognizer.listen(source)
            try:
                text = self.recognizer.recognize_google(audio)
                print(f"You said: {text}")
                return text
            except Exception as e:
                print(f"Error recognizing speech: {e}")
                return None
                
    def speak(self, text):
        print(f"Bot: {text}")
        self.engine.say(text)
        self.engine.runAndWait()

def train_model(model, dataloader, epochs=3, lr=3e-4):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = model.to(device)
    criterion = nn.CrossEntropyLoss(ignore_index=0)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    
    for epoch in range(epochs):
        model.train()
        total_loss = 0
        pbar = tqdm(dataloader, desc=f"Epoch {epoch+1}/{epochs}")
        
        for batch in pbar:
            inputs = batch['input_ids'].to(device)
            masks = batch['attention_mask'].to(device)
            labels = batch['labels'].to(device)
            
            optimizer.zero_grad()
            outputs = model(inputs, masks)
            loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item()
            pbar.set_postfix({'loss': loss.item()})
        
        print(f"Epoch {epoch+1} - Avg loss: {total_loss/len(dataloader):.4f}")

def generate_response(model, tokenizer, prompt, max_length=50, voice_interface=None):
    device = next(model.parameters()).device
    model.eval()
    
    inputs = tokenizer(
        prompt,
        return_tensors="pt",
        max_length=128,
        truncation=True,
        padding='max_length'
    ).to(device)
    
    with torch.no_grad():
        outputs = model.generate(
            input_ids=inputs['input_ids'],
            attention_mask=inputs['attention_mask'],
            max_length=max_length,
            do_sample=True,
            top_k=50,
            top_p=0.95,
            temperature=0.7
        )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    if voice_interface:
        voice_interface.speak(response)
    
    return response