English
File size: 8,899 Bytes
3852896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c513379
3852896
 
feafa91
3c2b539
3852896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9362d26
3852896
a612b51
3852896
 
 
 
 
 
 
 
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
 
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
 
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
 
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
a612b51
 
 
3852896
 
fb563a1
 
a612b51
3852896
 
 
 
 
 
 
 
 
 
 
 
 
3c2b539
 
a612b51
 
 
 
 
 
 
 
 
 
 
 
 
 
3852896
21e787d
3852896
 
 
4bebcce
3852896
 
 
4bebcce
 
3c2b539
 
 
 
3852896
 
 
 
 
 
 
 
 
 
21e787d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
license: mit
datasets:
- ILSVRC/imagenet-1k
- uoft-cs/cifar10
- uoft-cs/cifar100
language:
- en
metrics:
- accuracy
base_model:
- MS-ResNet
---

<div align="center">

<h1>I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks</h1>

[![Paper](https://img.shields.io/badge/Arxiv-2511.08065-B31B1B.svg)](https://arxiv.org/abs/2511.08065)
[![AAAI 2026](https://img.shields.io/badge/AAAI%202026-Oral-4b44ce.svg)](https://aaai.org/)
[![Google Scholar](https://img.shields.io/badge/Google%20Scholar-Paper-4285F4?style=flat-square&logo=google-scholar&logoColor=white)](https://scholar.google.com/scholar?cluster=1814482600796011970)
[![GitHub](https://img.shields.io/badge/GitHub-Repository-black?logo=github)](https://github.com/Ruichen0424/I2E)

[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Paper-FFD21E?style=flat-square&logo=huggingface&logoColor=black)](https://huggingface.co/papers/2511.08065)
[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Datasets-FFD21E?style=flat-square&logo=huggingface&logoColor=black)](https://huggingface.co/datasets/UESTC-BICS/I2E)
</div>

## ๐Ÿš€ Introduction

This repository contains the **pre-trained weights** for the paper **"I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks"**, which has been accepted for **Oral Presentation at AAAI 2026**.

**I2E** is a pioneering framework that bridges the data scarcity gap in neuromorphic computing. By simulating microsaccadic eye movements via highly parallelized convolution, I2E converts static images into high-fidelity event streams in real-time (>300x faster than prior methods).

### โœจ Key Highlights
* **SOTA Performance**: Achieves **60.50%** top-1 accuracy on Event-based ImageNet.
* **Sim-to-Real Transfer**: Pre-training on I2E data enables **92.5%** accuracy on real-world CIFAR10-DVS, setting a new benchmark.
* **Real-Time Conversion**: Enables on-the-fly data augmentation for deep SNN training.

## ๐Ÿ† Model Zoo & Results

We provide pre-trained models for **I2E-CIFAR** and **I2E-ImageNet**. You can download the `.pth` files directly from the [**Files and versions**](https://huggingface.co/Ruichen0424/I2E/tree/main) tab in this repository.

<table border="1">
    <tr>
        <th>Target Dataset</th>
        <th align="center">Architecture</th>
        <th align="center">Method</th>
        <th align="center">Top-1 Acc</th>
    </tr>
    <!-- CIFAR10-DVS -->
    <tr>
        <td rowspan="3" align="center" style="vertical-align: middle;"><strong>CIFAR10-DVS</strong><br>(Real)</td>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Baseline</td>
        <td align="center" style="vertical-align: middle;">65.6%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Transfer-I</td>
        <td align="center" style="vertical-align: middle;">83.1%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Transfer-II (Sim-to-Real)</td>
        <td align="center" style="vertical-align: middle;"><strong>92.5%</strong></td>
    </tr>
    <!-- I2E-CIFAR10 -->
    <tr>
        <td rowspan="3" align="center" style="vertical-align: middle;"><strong>I2E-CIFAR10</strong></td>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Baseline-I</td>
        <td align="center" style="vertical-align: middle;">85.07%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Baseline-II</td>
        <td align="center" style="vertical-align: middle;">89.23%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Transfer-I</td>
        <td align="center" style="vertical-align: middle;"><strong>90.86%</strong></td>
    </tr>
    <!-- I2E-CIFAR100 -->
    <tr>
        <td rowspan="3" align="center" style="vertical-align: middle;"><strong>I2E-CIFAR100</strong></td>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Baseline-I</td>
        <td align="center" style="vertical-align: middle;">51.32%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Baseline-II</td>
        <td align="center" style="vertical-align: middle;">60.68%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Transfer-I</td>
        <td align="center" style="vertical-align: middle;"><strong>64.53%</strong></td>
    </tr>
    <!-- I2E-ImageNet -->
    <tr>
        <td rowspan="4" align="center" style="vertical-align: middle;"><strong>I2E-ImageNet</strong></td>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Baseline-I</td>
        <td align="center" style="vertical-align: middle;">48.30%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Baseline-II</td>
        <td align="center" style="vertical-align: middle;">57.97%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet18</td>
        <td align="center" style="vertical-align: middle;">Transfer-I</td>
        <td align="center" style="vertical-align: middle;">59.28%</td>
    </tr>
    <tr>
        <td align="center" style="vertical-align: middle;">MS-ResNet34</td>
        <td align="center" style="vertical-align: middle;">Baseline-II</td>
        <td align="center" style="vertical-align: middle;"><strong>60.50%</strong></td>
    </tr>
</table>

> **Method Legend:**
> * **Baseline-I**: Training from scratch with minimal augmentation.
> * **Baseline-II**: Training from scratch with full augmentation.
> * **Transfer-I**: Fine-tuning from Static ImageNet (or I2E-ImageNet for CIFAR targets).
> * **Transfer-II**: Fine-tuning from I2E-CIFAR10.

## ๐Ÿ‘๏ธ Visualization

Below is the visualization of the I2E conversion process. We illustrate the high-fidelity conversion from static RGB images to dynamic event streams.

More than 200 additional visualization comparisons can be found in [Visualization.md](./Visualization.md).

<table border="0" style="width: 100%">
  <tr>
    <td width="25%" align="center"><img src="./assets/original_1.jpg" alt="Original 1" style="width:100%"></td>
    <td width="25%" align="center"><img src="./assets/converted_1.gif" alt="Converted 1" style="width:100%"></td>
    <td width="25%" align="center"><img src="./assets/original_2.jpg" alt="Original 2" style="width:100%"></td>
    <td width="25%" align="center"><img src="./assets/converted_2.gif" alt="Converted 2" style="width:100%"></td>
  </tr>
  <tr>
    <td width="25%" align="center"><img src="./assets/original_3.jpg" alt="Original 3" style="width:100%"></td>
    <td width="25%" align="center"><img src="./assets/converted_3.gif" alt="Converted 3" style="width:100%"></td>
    <td width="25%" align="center"><img src="./assets/original_4.jpg" alt="Original 4" style="width:100%"></td>
    <td width="25%" align="center"><img src="./assets/converted_4.gif" alt="Converted 4" style="width:100%"></td>
  </tr>
</table>

## ๐Ÿ’ป Usage

This repository hosts the **model weights only**.

For the **I2E dataset generation code**, **training scripts**, and detailed usage instructions, please refer to our official GitHub repository.

To generate the datasets (I2E-CIFAR10, I2E-CIFAR100, I2E-ImageNet) yourself using the I2E algorithm, please follow the instructions in the GitHub README.

[![GitHub](https://img.shields.io/badge/GitHub-Repository-black?logo=github)](https://github.com/Ruichen0424/I2E)

The download address for the datasets generated by the I2E algorithm is as follows.

[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Datasets-FFD21E?style=flat-square&logo=huggingface&logoColor=black)](https://huggingface.co/datasets/UESTC-BICS/I2E)

## ๐Ÿ“œ Citation

If you find this work or the models useful, please cite our AAAI 2026 paper:

```bibtex
@article{ma2025i2e,
  title={I2E: Real-Time Image-to-Event Conversion for High-Performance Spiking Neural Networks},
  author={Ma, Ruichen and Meng, Liwei and Qiao, Guanchao and Ning, Ning and Liu, Yang and Hu, Shaogang},
  journal={arXiv preprint arXiv:2511.08065},
  year={2025}
}
```