uploaded readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Quantization made by Richard Erkhov.
|
| 2 |
+
|
| 3 |
+
[Github](https://github.com/RichardErkhov)
|
| 4 |
+
|
| 5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
| 6 |
+
|
| 7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
SELM-Llama-3-8B-Instruct-iter-3 - GGUF
|
| 11 |
+
- Model creator: https://huggingface.co/ZhangShenao/
|
| 12 |
+
- Original model: https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3/
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
| Name | Quant method | Size |
|
| 16 |
+
| ---- | ---- | ---- |
|
| 17 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q2_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q2_K.gguf) | Q2_K | 2.96GB |
|
| 18 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
|
| 19 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.IQ3_S.gguf) | IQ3_S | 3.43GB |
|
| 20 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
|
| 21 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.IQ3_M.gguf) | IQ3_M | 3.52GB |
|
| 22 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q3_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q3_K.gguf) | Q3_K | 3.74GB |
|
| 23 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
|
| 24 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
|
| 25 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
|
| 26 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q4_0.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q4_0.gguf) | Q4_0 | 4.34GB |
|
| 27 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
|
| 28 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
|
| 29 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q4_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q4_K.gguf) | Q4_K | 4.58GB |
|
| 30 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
|
| 31 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q4_1.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q4_1.gguf) | Q4_1 | 4.78GB |
|
| 32 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q5_0.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q5_0.gguf) | Q5_0 | 5.21GB |
|
| 33 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
|
| 34 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q5_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q5_K.gguf) | Q5_K | 5.34GB |
|
| 35 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
|
| 36 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q5_1.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q5_1.gguf) | Q5_1 | 5.65GB |
|
| 37 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q6_K.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q6_K.gguf) | Q6_K | 6.14GB |
|
| 38 |
+
| [SELM-Llama-3-8B-Instruct-iter-3.Q8_0.gguf](https://huggingface.co/RichardErkhov/ZhangShenao_-_SELM-Llama-3-8B-Instruct-iter-3-gguf/blob/main/SELM-Llama-3-8B-Instruct-iter-3.Q8_0.gguf) | Q8_0 | 7.95GB |
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
Original model description:
|
| 44 |
+
---
|
| 45 |
+
license: mit
|
| 46 |
+
base_model: ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2
|
| 47 |
+
tags:
|
| 48 |
+
- alignment-handbook
|
| 49 |
+
- dpo
|
| 50 |
+
- trl
|
| 51 |
+
- selm
|
| 52 |
+
datasets:
|
| 53 |
+
- HuggingFaceH4/ultrafeedback_binarized
|
| 54 |
+
model-index:
|
| 55 |
+
- name: SELM-Llama-3-8B-Instruct-iter-3
|
| 56 |
+
results: []
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 62 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
[Self-Exploring Language Models: Active Preference Elicitation for Online Alignment](https://arxiv.org/abs/2405.19332).
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# SELM-Llama-3-8B-Instruct-iter-3
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
This model is a fine-tuned version of [ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset.
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
## Model description
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
- Model type: A 8B parameter Llama3-instruct-based Self-Exploring Language Models (SELM).
|
| 83 |
+
- License: MIT
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
## Results
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
| | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) |
|
| 92 |
+
|----------------------------------------|------------------------|--------------------|
|
| 93 |
+
| [SELM-Llama-3-8B-Instruct-iter-3](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-3) |        33.47 |       8.29 |
|
| 94 |
+
| [SELM-Llama-3-8B-Instruct-iter-2](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-2) |        35.65 |       8.09 |
|
| 95 |
+
| [SELM-Llama-3-8B-Instruct-iter-1](https://huggingface.co/ZhangShenao/SELM-Llama-3-8B-Instruct-iter-1) |        32.02 |       7.92 |
|
| 96 |
+
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |        24.31 |       7.93 |
|
| 97 |
+
|
| 98 |
+
Our model also ranks highly on [WildBench](https://huggingface.co/spaces/allenai/WildBench)! 🔥
|
| 99 |
+
|
| 100 |
+
### Training hyperparameters
|
| 101 |
+
|
| 102 |
+
The following hyperparameters were used during training:
|
| 103 |
+
- alpha: 0.0001
|
| 104 |
+
- beta: 0.01
|
| 105 |
+
- train_batch_size: 4
|
| 106 |
+
- seed: 42
|
| 107 |
+
- distributed_type: multi-GPU
|
| 108 |
+
- num_devices: 8
|
| 109 |
+
- gradient_accumulation_steps: 4
|
| 110 |
+
- total_train_batch_size: 128
|
| 111 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 112 |
+
- num_epochs: 1
|
| 113 |
+
|
| 114 |
+
### Framework versions
|
| 115 |
+
|
| 116 |
+
- Transformers 4.40.2
|
| 117 |
+
- Pytorch 2.1.2+cu121
|
| 118 |
+
- Datasets 2.14.6
|
| 119 |
+
- Tokenizers 0.19.1
|
| 120 |
+
|
| 121 |
+
|