rvo commited on
Commit
017cb2b
·
verified ·
1 Parent(s): ea7afd3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -96,12 +96,12 @@ for i, query in enumerate(queries):
96
  print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")
97
 
98
  # Query: What is machine learning?
99
- # Similarity: 0.6908 | Document 0: Machine learning is a subset of ...
100
  # Similarity: 0.4598 | Document 1: Neural networks are trained ...
101
  #
102
  # Query: How does neural network training work?
103
- # Similarity: 0.4432 | Document 0: Machine learning is a subset of ...
104
- # Similarity: 0.5794 | Document 1: Neural networks are trained ...
105
  ```
106
 
107
  ### Transformers Usage
@@ -171,8 +171,8 @@ with torch.inference_mode():
171
  similarities = query_embeddings @ document_embeddings.T
172
  print(f"Similarities:\n{similarities}")
173
  # Similarities:
174
- # tensor([[0.6908, 0.4598],
175
- # [0.4432, 0.5794]])
176
  ``` -->
177
 
178
  ### Asymmetric Retrieval Setup
@@ -180,13 +180,13 @@ print(f"Similarities:\n{similarities}")
180
  `mdbr-leaf-ir` is *aligned* to [`snowflake-arctic-embed-m-v1.5`](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5), the model it has been distilled from, making the asymmetric system below possible:
181
 
182
  ```python
183
- # Use a larger model for document encoding (one-time, at index time)
184
- doc_model = SentenceTransformer("Snowflake/snowflake-arctic-embed-m-v1.5")
185
- document_embeddings = doc_model.encode(documents)
186
-
187
  # Use mdbr-leaf-ir for query encoding (real-time, low latency)
188
  query_model = SentenceTransformer("MongoDB/mdbr-leaf-ir")
189
  query_embeddings = query_model.encode(queries, prompt_name="query")
 
 
 
 
190
 
191
  # Compute similarities
192
  scores = query_model.similarity(query_embeddings, document_embeddings)
@@ -215,8 +215,8 @@ print(f"* Similarities:\n\t{similarities}")
215
  # After MRL:
216
  # * Embeddings dimension: 256
217
  # * Similarities:
218
- # tensor([[0.7202, 0.5006],
219
- # [0.4744, 0.6083]])
220
  ```
221
 
222
  ### Vector Quantization
@@ -248,8 +248,8 @@ print(f"* Similarities:\n{similarities}")
248
  # After quantization:
249
  # * Embeddings type: int8
250
  # * Similarities:
251
- # [[119073 78877]
252
- # [ 76174 99127]]
253
  ```
254
 
255
  ## Evaluation
 
96
  print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")
97
 
98
  # Query: What is machine learning?
99
+ # Similarity: 0.6857 | Document 0: Machine learning is a subset of ...
100
  # Similarity: 0.4598 | Document 1: Neural networks are trained ...
101
  #
102
  # Query: How does neural network training work?
103
+ # Similarity: 0.4238 | Document 0: Machine learning is a subset of ...
104
+ # Similarity: 0.5723 | Document 1: Neural networks are trained ...
105
  ```
106
 
107
  ### Transformers Usage
 
171
  similarities = query_embeddings @ document_embeddings.T
172
  print(f"Similarities:\n{similarities}")
173
  # Similarities:
174
+ # tensor([[0.6857, 0.4598],
175
+ # [0.4238, 0.5723]])
176
  ``` -->
177
 
178
  ### Asymmetric Retrieval Setup
 
180
  `mdbr-leaf-ir` is *aligned* to [`snowflake-arctic-embed-m-v1.5`](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5), the model it has been distilled from, making the asymmetric system below possible:
181
 
182
  ```python
 
 
 
 
183
  # Use mdbr-leaf-ir for query encoding (real-time, low latency)
184
  query_model = SentenceTransformer("MongoDB/mdbr-leaf-ir")
185
  query_embeddings = query_model.encode(queries, prompt_name="query")
186
+
187
+ # Use a larger model for document encoding (one-time, at index time)
188
+ doc_model = SentenceTransformer("Snowflake/snowflake-arctic-embed-m-v1.5")
189
+ document_embeddings = doc_model.encode(documents)
190
 
191
  # Compute similarities
192
  scores = query_model.similarity(query_embeddings, document_embeddings)
 
215
  # After MRL:
216
  # * Embeddings dimension: 256
217
  # * Similarities:
218
+ # tensor([[0.7136, 0.4989],
219
+ # [0.4567, 0.6022]])
220
  ```
221
 
222
  ### Vector Quantization
 
248
  # After quantization:
249
  # * Embeddings type: int8
250
  # * Similarities:
251
+ # [[118022 79111]
252
+ # [ 72961 98333]]
253
  ```
254
 
255
  ## Evaluation