File size: 12,476 Bytes
25fff03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
# Copyright (c) 2021, EleutherAI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import shutil
import itertools
from pathlib import Path
import pytest
import random
import torch
import torch.distributed as dist
from torch.multiprocessing import Process
import multiprocessing as mp
from yaml import load
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
from copy import deepcopy
import deepspeed
TEST_CHECKPOINT_DIR = "test_checkpoint"
TEST_LOG_DIR = "test_logs"
TEST_TENSORBOARD_DIR = "test_tensorboard"
# Worker timeout *after* the first worker has completed.
DEEPSPEED_UNIT_WORKER_TIMEOUT = 120
def get_xdist_worker_id():
xdist_worker = os.environ.get("PYTEST_XDIST_WORKER", None)
if xdist_worker is not None:
xdist_worker_id = xdist_worker.replace("gw", "")
return int(xdist_worker_id)
return None
def get_master_port():
master_port = os.environ.get("DS_TEST_PORT", "29503")
xdist_worker_id = get_xdist_worker_id()
if xdist_worker_id is not None:
master_port = str(int(master_port) + xdist_worker_id)
return master_port
_num_gpus = None
def count_gpus():
global _num_gpus
if _num_gpus is None:
import subprocess
nvidia_smi = subprocess.check_output(["nvidia-smi", "--list-gpus"])
_num_gpus = len(nvidia_smi.decode("utf-8").strip().split("\n"))
return _num_gpus
def set_cuda_visibile():
cuda_visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
xdist_worker_id = get_xdist_worker_id()
if xdist_worker_id is None:
xdist_worker_id = 0
if cuda_visible is None:
# CUDA_VISIBLE_DEVICES is not set, discover it from nvidia-smi instead
import subprocess
nvidia_smi = subprocess.check_output(["nvidia-smi", "--list-gpus"])
num_gpus = len(nvidia_smi.decode("utf-8").strip().split("\n"))
cuda_visible = ",".join(map(str, range(num_gpus)))
# rotate list based on xdist worker id, example below
# wid=0 -> ['0', '1', '2', '3']
# wid=1 -> ['1', '2', '3', '0']
# wid=2 -> ['2', '3', '0', '1']
# wid=3 -> ['3', '0', '1', '2']
dev_id_list = cuda_visible.split(",")
dev_id_list = dev_id_list[xdist_worker_id:] + dev_id_list[:xdist_worker_id]
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(dev_id_list)
def get_root_directory():
return Path(__file__).parents[1]
def get_config_directory():
return get_root_directory() / "configs"
def get_configs_with_path(configs):
return [str(get_config_directory() / cfg) for cfg in configs]
def get_test_configs_with_path(configs: list):
test_config_dir = Path(__file__).parent / "test_configs"
return [str((test_config_dir / cfg).absolute()) for cfg in configs]
def clear_test_dirs():
log_dir = os.path.join(get_root_directory(), TEST_LOG_DIR)
if os.path.isdir(log_dir):
shutil.rmtree(log_dir)
checkpoint_dir = os.path.join(get_root_directory(), TEST_CHECKPOINT_DIR)
if os.path.isdir(checkpoint_dir):
shutil.rmtree(checkpoint_dir)
tensorboard_dir = os.path.join(get_root_directory(), TEST_TENSORBOARD_DIR)
if os.path.isdir(tensorboard_dir):
shutil.rmtree(tensorboard_dir)
def distributed_test(world_size=2, backend="nccl"):
"""A decorator for executing a function (e.g., a unit test) in a distributed manner.
This decorator manages the spawning and joining of processes, initialization of
torch.distributed, and catching of errors.
This function is copied from: https://github.com/EleutherAI/DeeperSpeed/blob/24026e5bb37c528a222b8635c46256b1e1825d2e/tests/unit/common.py#L16
Usage example:
@distributed_test(worker_size=[2,3])
def my_test():
rank = dist.get_rank()
world_size = dist.get_world_size()
assert(rank < world_size)
Arguments:
world_size (int or list): number of ranks to spawn. Can be a list to spawn
multiple tests.
"""
def dist_wrap(run_func):
"""Second-level decorator for dist_test. This actually wraps the function."""
def dist_init(local_rank, num_procs, *func_args, **func_kwargs):
"""Initialize torch.distributed and execute the user function."""
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = get_master_port()
os.environ["LOCAL_RANK"] = str(local_rank)
# NOTE: unit tests don't support multi-node so local_rank == global rank
os.environ["RANK"] = str(local_rank)
os.environ["WORLD_SIZE"] = str(num_procs)
# turn off NCCL logging if set
os.environ.pop("NCCL_DEBUG", None)
deepspeed.init_distributed(dist_backend=backend)
if torch.cuda.is_available():
torch.cuda.set_device(local_rank)
run_func(*func_args, **func_kwargs)
# make sure all ranks finish at the same time
torch.distributed.barrier()
# tear down after test completes
torch.distributed.destroy_process_group()
def dist_launcher(num_procs, *func_args, **func_kwargs):
"""Launch processes and gracefully handle failures."""
# Spawn all workers on subprocesses.
processes = []
for local_rank in range(num_procs):
p = Process(
target=dist_init,
args=(local_rank, num_procs, *func_args),
kwargs=func_kwargs,
)
p.start()
processes.append(p)
# Now loop and wait for a test to complete. The spin-wait here isn't a big
# deal because the number of processes will be O(#GPUs) << O(#CPUs).
any_done = False
while not any_done:
for p in processes:
if not p.is_alive():
any_done = True
break
# Wait for all other processes to complete
for p in processes:
p.join(DEEPSPEED_UNIT_WORKER_TIMEOUT)
failed = [(rank, p) for rank, p in enumerate(processes) if p.exitcode != 0]
for rank, p in failed:
# If it still hasn't terminated, kill it because it hung.
if p.exitcode is None:
p.terminate()
pytest.fail(f"Worker {rank} hung.", pytrace=False)
if p.exitcode < 0:
pytest.fail(
f"Worker {rank} killed by signal {-p.exitcode}", pytrace=False
)
if p.exitcode > 0:
pytest.fail(
f"Worker {rank} exited with code {p.exitcode}", pytrace=False
)
def run_func_decorator(*func_args, **func_kwargs):
"""Entry point for @distributed_test()."""
gpus = count_gpus()
if isinstance(world_size, int):
if gpus < world_size:
pytest.mark.skip(
reason=f"at least {world_size} GPUs are required to run this test"
)
return
dist_launcher(world_size, *func_args, **func_kwargs)
elif isinstance(world_size, list):
for procs in world_size:
dist_launcher(procs, *func_args, **func_kwargs)
time.sleep(0.5)
else:
raise TypeError(f"world_size must be an integer or a list of integers.")
return run_func_decorator
return dist_wrap
def model_setup(yaml_list=None, param_dict=None, clear_data=True):
from megatron.neox_arguments import NeoXArgs
from megatron.mpu import destroy_model_parallel
from megatron import initialize_megatron
from megatron.training import setup_model_and_optimizer
destroy_model_parallel() # mpu model parallel contains remaining global vars
if clear_data and (
not torch.distributed.is_initialized()
or torch.distributed.get_world_size() == 1
or torch.distributed.get_rank() == 0
):
clear_test_dirs()
overwrite_values = {
"user_script": str(get_root_directory() / "train.py"),
"save": TEST_CHECKPOINT_DIR,
"load": TEST_CHECKPOINT_DIR,
"log_dir": TEST_LOG_DIR,
"tensorboard_dir": TEST_TENSORBOARD_DIR,
}
# should not both be none
assert yaml_list is not None or param_dict is not None
# initially load config from files as would be the case in deepy.py
if yaml_list is not None:
args_loaded = NeoXArgs.from_ymls(yaml_list, overwrite_values=overwrite_values)
else:
p_dict = param_dict.copy()
p_dict.update(overwrite_values)
args_loaded = NeoXArgs.from_dict(p_dict)
args_loaded.build_tokenizer()
initialize_megatron(neox_args=args_loaded)
model, optimizer, lr_scheduler = setup_model_and_optimizer(
neox_args=args_loaded, use_cache=True
)
return model, optimizer, lr_scheduler, args_loaded
def bounded_product(sequence, n=None, seed=None):
"""
Returns a shuffled, bounded cartesian product of the input sequence.
Designed to cover as wide a range of permutations as possible with a limited number of iterations.
Will manifest the whole list in memory, so not suitable for super large sequences.
:param sequence: iterable
:param n: length of returned list
:param seed: random seed for reproducibility
:return: list
"""
p = list(itertools.product(*sequence))
if seed is not None:
random.seed(seed)
random.shuffle(p)
return p if n is None else p[:n]
def parametrize(
params_to_test: dict, max_tests: int = 50, seed: int = None, with_names=True
):
"""
Generates a random sample of max_tests length of all possible combinations of values in
`params_to_test`.
In `params_to_test` you can either specify one value, and all possible settings of that value,
or two values separated by a comma, and all possible combinations of those two values in tandem.
i.e "hidden_size,num_heads": [[768,12], [1024,32], [2048, 64]]
so the first item in each list is a value of `hidden_size` and the second a value of `num_heads`
this is useful for reducing the size of possible tests for values we know are unlikely to interact beforehand,
since the cartesian product can grow very large.
:param params_to_test: dict of neox params
:param max_tests: maximum number of tests to run
:param seed: random seed
:return: a list of neox param dicts to pass to a parametrized unit test
"""
keys, values = zip(*params_to_test.items())
ret = []
if with_names:
experiments = []
for p in bounded_product(values, n=max_tests, seed=seed):
experiment = dict(zip(keys, p))
to_pop = []
to_add = {}
for k, v in experiment.items():
if "," in k:
keys_split = [i.strip() for i in k.split(",")]
values_separated = experiment[k]
to_pop.append(k)
assert len(values_separated) == len(keys_split)
new_dict = dict(zip(keys_split, values_separated))
to_add.update(new_dict)
experiment.update(to_add)
for k in to_pop:
experiment.pop(k)
base = deepcopy(BASE_CONFIG)
base.update(experiment)
ret.append(base)
if with_names:
experiments.append(experiment)
if with_names:
return ret, [dict_repr(d) for d in experiments]
return ret
def dict_repr(d):
return " ".join([f"{str(k)} : {str(v)}" for k, v in d.items()])
binary = [True, False]
with open(get_test_configs_with_path(["test_train_base.yml"])[0], "r") as f:
BASE_CONFIG = load(f, Loader=Loader)
|