| using Microsoft.ML; | |
| using Microsoft.ML.Tokenizers; | |
| using System; | |
| using System.Collections.Generic; | |
| using System.IO; | |
| using System.Linq; | |
| using TorchSharp; | |
| var batch = 1; | |
| var bpe = new Bpe("vocab.json", "merges.txt", endOfWordSuffix: "</w>"); | |
| var tokenier = new Tokenizer(bpe); | |
| var start_token = 49406; | |
| var end_token = 49407; | |
| var prompt = "a wild cute green cat"; | |
| var res = tokenier.Encode(prompt); | |
| var tokens = new[] { start_token }.Concat(res.Ids.Concat(Enumerable.Repeat(0, 75 - res.Ids.Count))).Concat(new[] { end_token }).ToList(); | |
| var uncontional_tokens = new[]{start_token, end_token}.Concat(Enumerable.Repeat(0, 75)).ToList(); | |
| var tokenTensor = torch.tensor(tokens.ToArray(), dtype: torch.ScalarType.Int64, device: device); | |
| tokenTensor = tokenTensor.repeat(batch, 1); | |
| var unconditional_tokenTensor = torch.tensor(uncontional_tokens.ToArray(), dtype: torch.ScalarType.Int64, device: device); | |
| unconditional_tokenTensor = unconditional_tokenTensor.repeat(batch, 1); | |
| torchvision.io.DefaultImager = new torchvision.io.SkiaImager(); | |
| var device = TorchSharp.torch.device("cuda:0"); | |
| var clipEncoder = new ClipEncoder("clip_encoder.ckpt", device); | |
| var img = torch.randn(batch, 4, 64, 64, dtype: torch.ScalarType.Float32, device: device); | |
| var t = torch.full(new[]{batch, 1L}, value: batch, dtype: torch.ScalarType.Int32, device: device); | |
| var condition = clipEncoder.Forward(tokenTensor); | |
| var unconditional_condition = clipEncoder.Forward(unconditional_tokenTensor); | |
| clipEncoder.Dispose(); | |
| var ddpm = new DDPM("ddim_v_sampler.ckpt", device); | |
| var ddimSampler = new DDIMSampler(ddpm); | |
| var ddim_steps = 50; | |
| img = ddimSampler.Sample(img, condition, unconditional_condition, ddim_steps); | |
| ddpm.Dispose(); | |
| var autoencoderKL = new AutoencoderKL("autoencoder_kl.ckpt", device); | |
| var decoded_images = (torch.Tensor)autoencoderKL.Forward(img); | |
| decoded_images = torch.clamp((decoded_images + 1.0) / 2.0, 0.0, 1.0); | |
| for(int i = 0; i!= batch; ++i) | |
| { | |
| var image = decoded_images[i]; | |
| image = (image * 255.0).to(torch.ScalarType.Byte).cpu(); | |
| torchvision.io.write_image(image, $"{i}.png", torchvision.ImageFormat.Png); | |
| } |