--- license: mit tags: - robotics - diffusion-policy - imitation-learning - manipulation --- # UMI-on-Air - Pre-trained Checkpoints Pre-trained diffusion policy checkpoints for **UMI-on-Air: Embodiment-Aware Guidance for Embodiment-Agnostic Visuomotor Policies**. 📄 **Paper:** [UMI-on-Air (PDF)](https://umi-on-air.github.io/static/umi-on-air.pdf) | [arXiv](https://arxiv.org/abs/2510.02614) 🌐 **Project Website:** [umi-on-air.github.io](https://umi-on-air.github.io/) 💻 **Code:** [GitHub](https://github.com/LeCAR-Lab/UMI-on-Air) ## Checkpoints Included | Task | Description | |------|-------------| | `umi_cabinet` | Cabinet door opening task | | `umi_peg` | Peg insertion task | | `umi_pick` | Object picking task | | `umi_valve` | Valve turning task | ## Usage ```bash # Download and extract wget https://huggingface.co/LeCAR-Lab/umi-on-air_checkpoints/resolve/main/checkpoints.tar.gz tar -xzf checkpoints.tar.gz ``` Each checkpoint folder contains: - `checkpoints/latest.ckpt` - Model weights - `normalizer.pkl` - Data normalization parameters - `.hydra/config.yaml` - Training configuration ## Citation If you use these checkpoints, please cite our work: ```bibtex @misc{gupta2025umionairembodimentawareguidanceembodimentagnostic, title={UMI-on-Air: Embodiment-Aware Guidance for Embodiment-Agnostic Visuomotor Policies}, author={Harsh Gupta and Xiaofeng Guo and Huy Ha and Chuer Pan and Muqing Cao and Dongjae Lee and Sebastian Scherer and Shuran Song and Guanya Shi}, year={2025}, eprint={2510.02614}, archivePrefix={arXiv}, primaryClass={cs.RO}, url={https://arxiv.org/abs/2510.02614}, } ```