--- library_name: transformers base_model: - mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1 --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use ``` TEXT = """ """ SCHEMA = """ """ SYSTEM_PROMPT = """ ### Role: You are an expert data extractor specialising in mapping hierarchical text data into a given JSON Schema. ### DATA INPUT: - **Text:** ```{{TEXT}}``` - **Empty JSON Schema:** ```{{SCHEMA}}``` ### TASK REQUIREMENT: 1. Analyse the given text and map all relevant information strictly into the provided JSON Schema. 2. Provide your output in **two mandatory sections**: - **``:** The filled JSON object - **``:** Reasoning for the mapping decisions ### OUTPUT STRUCTURE: ` /* Explanation of mapping logic */ ` ` /* Completed JSON Object */ ` ### STRICT RULES FOR GENERATING OUTPUT: 1. **Both Tags Required:** - Always provide both the `` and the `` sections. - If reasoning is minimal, state: "Direct mapping from text to schema." 2. **JSON Schema Mapping:** - Strictly map the text data to the given JSON Schema without modification or omissions. 3. **Hierarchy Preservation:** - Maintain proper parent-child relationships and follow the schema's hierarchical structure. 4. **Correct Mapping of Attributes:** -Map key attributes, including `displayName`, `description`, `type`, `component`, and source to define the structure, metadata, and data sources for each field within the schema 5. **JSON Format Compliance:** - Escape quotes (`\"`), replace newlines with `\\n`, avoid trailing commas, and use double quotes exclusively. 6. **Step-by-Step Reasoning:** - Explain your reasoning within the `` tag. ### IMPORTANT: If either the `` or `` tags is missing, the response will be considered incomplete. """ from jinja2 import Template system_prompt_template = Template(SYSTEM_PROMPT) system_prompt_str = system_prompt_template.render(TEXT=TEXT, SCHEMA=SCHEMA) ``` ``` from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, FineGrainedFP8Config import torch model_name = "Isotonic/DR1-1.5b-JSON_extraction" # Initialize tokenizer and model device = "mps" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map=device) inputs = tokenizer([system_prompt_str], return_tensors="pt").to(device) text_streamer = TextStreamer(tokenizer) with torch.no_grad(): output_ids = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=4096, temperature=0.6, top_p=0.92, repetition_penalty=1.1, streamer=text_streamer, pad_token_id=tokenizer.pad_token_id, ) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) ``` ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]