Devy1 commited on
Commit
257c5b1
·
verified ·
1 Parent(s): 1ebf96d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,2103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:9020
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: sentence-transformers/all-MiniLM-L6-v2
11
+ widget:
12
+ - source_sentence: python multiprocessing show cpu count
13
+ sentences:
14
+ - "def unique(seq):\n \"\"\"Return the unique elements of a collection even if\
15
+ \ those elements are\n unhashable and unsortable, like dicts and sets\"\"\
16
+ \"\n cleaned = []\n for each in seq:\n if each not in cleaned:\n\
17
+ \ cleaned.append(each)\n return cleaned"
18
+ - "def is_in(self, point_x, point_y):\n \"\"\" Test if a point is within\
19
+ \ this polygonal region \"\"\"\n\n point_array = array(((point_x, point_y),))\n\
20
+ \ vertices = array(self.points)\n winding = self.inside_rule ==\
21
+ \ \"winding\"\n result = points_in_polygon(point_array, vertices, winding)\n\
22
+ \ return result[0]"
23
+ - "def machine_info():\n \"\"\"Retrieve core and memory information for the current\
24
+ \ machine.\n \"\"\"\n import psutil\n BYTES_IN_GIG = 1073741824.0\n \
25
+ \ free_bytes = psutil.virtual_memory().total\n return [{\"memory\": float(\"\
26
+ %.1f\" % (free_bytes / BYTES_IN_GIG)), \"cores\": multiprocessing.cpu_count(),\n\
27
+ \ \"name\": socket.gethostname()}]"
28
+ - source_sentence: python subplot set the whole title
29
+ sentences:
30
+ - "def set_title(self, title, **kwargs):\n \"\"\"Sets the title on the underlying\
31
+ \ matplotlib AxesSubplot.\"\"\"\n ax = self.get_axes()\n ax.set_title(title,\
32
+ \ **kwargs)"
33
+ - "def moving_average(array, n=3):\n \"\"\"\n Calculates the moving average\
34
+ \ of an array.\n\n Parameters\n ----------\n array : array\n The\
35
+ \ array to have the moving average taken of\n n : int\n The number of\
36
+ \ points of moving average to take\n \n Returns\n -------\n MovingAverageArray\
37
+ \ : array\n The n-point moving average of the input array\n \"\"\"\n\
38
+ \ ret = _np.cumsum(array, dtype=float)\n ret[n:] = ret[n:] - ret[:-n]\n\
39
+ \ return ret[n - 1:] / n"
40
+ - "def to_query_parameters(parameters):\n \"\"\"Converts DB-API parameter values\
41
+ \ into query parameters.\n\n :type parameters: Mapping[str, Any] or Sequence[Any]\n\
42
+ \ :param parameters: A dictionary or sequence of query parameter values.\n\n\
43
+ \ :rtype: List[google.cloud.bigquery.query._AbstractQueryParameter]\n :returns:\
44
+ \ A list of query parameters.\n \"\"\"\n if parameters is None:\n \
45
+ \ return []\n\n if isinstance(parameters, collections_abc.Mapping):\n \
46
+ \ return to_query_parameters_dict(parameters)\n\n return to_query_parameters_list(parameters)"
47
+ - source_sentence: python merge two set to dict
48
+ sentences:
49
+ - "def make_regex(separator):\n \"\"\"Utility function to create regexp for matching\
50
+ \ escaped separators\n in strings.\n\n \"\"\"\n return re.compile(r'(?:'\
51
+ \ + re.escape(separator) + r')?((?:[^' +\n re.escape(separator)\
52
+ \ + r'\\\\]|\\\\.)+)')"
53
+ - "def csvtolist(inputstr):\n \"\"\" converts a csv string into a list \"\"\"\
54
+ \n reader = csv.reader([inputstr], skipinitialspace=True)\n output = []\n\
55
+ \ for r in reader:\n output += r\n return output"
56
+ - "def dict_merge(set1, set2):\n \"\"\"Joins two dictionaries.\"\"\"\n return\
57
+ \ dict(list(set1.items()) + list(set2.items()))"
58
+ - source_sentence: python string % substitution float
59
+ sentences:
60
+ - "def _configure_logger():\n \"\"\"Configure the logging module.\"\"\"\n \
61
+ \ if not app.debug:\n _configure_logger_for_production(logging.getLogger())\n\
62
+ \ elif not app.testing:\n _configure_logger_for_debugging(logging.getLogger())"
63
+ - "def __set__(self, instance, value):\n \"\"\" Set a related object for\
64
+ \ an instance. \"\"\"\n\n self.map[id(instance)] = (weakref.ref(instance),\
65
+ \ value)"
66
+ - "def format_float(value): # not used\n \"\"\"Modified form of the 'g' format\
67
+ \ specifier.\n \"\"\"\n string = \"{:g}\".format(value).replace(\"e+\",\
68
+ \ \"e\")\n string = re.sub(\"e(-?)0*(\\d+)\", r\"e\\1\\2\", string)\n return\
69
+ \ string"
70
+ - source_sentence: bottom 5 rows in python
71
+ sentences:
72
+ - "def refresh(self, document):\n\t\t\"\"\" Load a new copy of a document from the\
73
+ \ database. does not\n\t\t\treplace the old one \"\"\"\n\t\ttry:\n\t\t\told_cache_size\
74
+ \ = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\
75
+ \t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\
76
+ \t\treturn obj"
77
+ - "def table_top_abs(self):\n \"\"\"Returns the absolute position of table\
78
+ \ top\"\"\"\n table_height = np.array([0, 0, self.table_full_size[2]])\n\
79
+ \ return string_to_array(self.floor.get(\"pos\")) + table_height"
80
+ - "def get_dimension_array(array):\n \"\"\"\n Get dimension of an array getting\
81
+ \ the number of rows and the max num of\n columns.\n \"\"\"\n if all(isinstance(el,\
82
+ \ list) for el in array):\n result = [len(array), len(max([x for x in array],\
83
+ \ key=len,))]\n\n # elif array and isinstance(array, list):\n else:\n \
84
+ \ result = [len(array), 1]\n\n return result"
85
+ pipeline_tag: sentence-similarity
86
+ library_name: sentence-transformers
87
+ ---
88
+
89
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
90
+
91
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Sentence Transformer
97
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
98
+ - **Maximum Sequence Length:** 256 tokens
99
+ - **Output Dimensionality:** 384 dimensions
100
+ - **Similarity Function:** Cosine Similarity
101
+ <!-- - **Training Dataset:** Unknown -->
102
+ <!-- - **Language:** Unknown -->
103
+ <!-- - **License:** Unknown -->
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
109
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
110
+
111
+ ### Full Model Architecture
112
+
113
+ ```
114
+ SentenceTransformer(
115
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
116
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
117
+ (2): Normalize()
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("Devy1/MiniLM-cosqa-16")
137
+ # Run inference
138
+ sentences = [
139
+ 'bottom 5 rows in python',
140
+ 'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
141
+ 'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 384]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities)
150
+ # tensor([[ 1.0000, 0.5117, -0.0480],
151
+ # [ 0.5117, 1.0000, -0.0416],
152
+ # [-0.0480, -0.0416, 1.0000]])
153
+ ```
154
+
155
+ <!--
156
+ ### Direct Usage (Transformers)
157
+
158
+ <details><summary>Click to see the direct usage in Transformers</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Downstream Usage (Sentence Transformers)
165
+
166
+ You can finetune this model on your own dataset.
167
+
168
+ <details><summary>Click to expand</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Out-of-Scope Use
175
+
176
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
177
+ -->
178
+
179
+ <!--
180
+ ## Bias, Risks and Limitations
181
+
182
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
183
+ -->
184
+
185
+ <!--
186
+ ### Recommendations
187
+
188
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
189
+ -->
190
+
191
+ ## Training Details
192
+
193
+ ### Training Dataset
194
+
195
+ #### Unnamed Dataset
196
+
197
+ * Size: 9,020 training samples
198
+ * Columns: <code>anchor</code> and <code>positive</code>
199
+ * Approximate statistics based on the first 1000 samples:
200
+ | | anchor | positive |
201
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
202
+ | type | string | string |
203
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.67 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 86.17 tokens</li><li>max: 256 tokens</li></ul> |
204
+ * Samples:
205
+ | anchor | positive |
206
+ |:--------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
207
+ | <code>1d array in char datatype in python</code> | <code>def _convert_to_array(array_like, dtype):<br> """<br> Convert Matrix attributes which are array-like or buffer to array.<br> """<br> if isinstance(array_like, bytes):<br> return np.frombuffer(array_like, dtype=dtype)<br> return np.asarray(array_like, dtype=dtype)</code> |
208
+ | <code>python condition non none</code> | <code>def _not(condition=None, **kwargs):<br> """<br> Return the opposite of input condition.<br><br> :param condition: condition to process.<br><br> :result: not condition.<br> :rtype: bool<br> """<br><br> result = True<br><br> if condition is not None:<br> result = not run(condition, **kwargs)<br><br> return result</code> |
209
+ | <code>accessing a column from a matrix in python</code> | <code>def get_column(self, X, column):<br> """Return a column of the given matrix.<br><br> Args:<br> X: `numpy.ndarray` or `pandas.DataFrame`.<br> column: `int` or `str`.<br><br> Returns:<br> np.ndarray: Selected column.<br> """<br> if isinstance(X, pd.DataFrame):<br> return X[column].values<br><br> return X[:, column]</code> |
210
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
211
+ ```json
212
+ {
213
+ "scale": 20.0,
214
+ "similarity_fct": "cos_sim",
215
+ "gather_across_devices": false
216
+ }
217
+ ```
218
+
219
+ ### Training Hyperparameters
220
+ #### Non-Default Hyperparameters
221
+
222
+ - `per_device_train_batch_size`: 16
223
+ - `fp16`: True
224
+
225
+ #### All Hyperparameters
226
+ <details><summary>Click to expand</summary>
227
+
228
+ - `overwrite_output_dir`: False
229
+ - `do_predict`: False
230
+ - `eval_strategy`: no
231
+ - `prediction_loss_only`: True
232
+ - `per_device_train_batch_size`: 16
233
+ - `per_device_eval_batch_size`: 8
234
+ - `per_gpu_train_batch_size`: None
235
+ - `per_gpu_eval_batch_size`: None
236
+ - `gradient_accumulation_steps`: 1
237
+ - `eval_accumulation_steps`: None
238
+ - `torch_empty_cache_steps`: None
239
+ - `learning_rate`: 5e-05
240
+ - `weight_decay`: 0.0
241
+ - `adam_beta1`: 0.9
242
+ - `adam_beta2`: 0.999
243
+ - `adam_epsilon`: 1e-08
244
+ - `max_grad_norm`: 1.0
245
+ - `num_train_epochs`: 3
246
+ - `max_steps`: -1
247
+ - `lr_scheduler_type`: linear
248
+ - `lr_scheduler_kwargs`: {}
249
+ - `warmup_ratio`: 0.0
250
+ - `warmup_steps`: 0
251
+ - `log_level`: passive
252
+ - `log_level_replica`: warning
253
+ - `log_on_each_node`: True
254
+ - `logging_nan_inf_filter`: True
255
+ - `save_safetensors`: True
256
+ - `save_on_each_node`: False
257
+ - `save_only_model`: False
258
+ - `restore_callback_states_from_checkpoint`: False
259
+ - `no_cuda`: False
260
+ - `use_cpu`: False
261
+ - `use_mps_device`: False
262
+ - `seed`: 42
263
+ - `data_seed`: None
264
+ - `jit_mode_eval`: False
265
+ - `use_ipex`: False
266
+ - `bf16`: False
267
+ - `fp16`: True
268
+ - `fp16_opt_level`: O1
269
+ - `half_precision_backend`: auto
270
+ - `bf16_full_eval`: False
271
+ - `fp16_full_eval`: False
272
+ - `tf32`: None
273
+ - `local_rank`: 0
274
+ - `ddp_backend`: None
275
+ - `tpu_num_cores`: None
276
+ - `tpu_metrics_debug`: False
277
+ - `debug`: []
278
+ - `dataloader_drop_last`: False
279
+ - `dataloader_num_workers`: 0
280
+ - `dataloader_prefetch_factor`: None
281
+ - `past_index`: -1
282
+ - `disable_tqdm`: False
283
+ - `remove_unused_columns`: True
284
+ - `label_names`: None
285
+ - `load_best_model_at_end`: False
286
+ - `ignore_data_skip`: False
287
+ - `fsdp`: []
288
+ - `fsdp_min_num_params`: 0
289
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
290
+ - `fsdp_transformer_layer_cls_to_wrap`: None
291
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
292
+ - `parallelism_config`: None
293
+ - `deepspeed`: None
294
+ - `label_smoothing_factor`: 0.0
295
+ - `optim`: adamw_torch_fused
296
+ - `optim_args`: None
297
+ - `adafactor`: False
298
+ - `group_by_length`: False
299
+ - `length_column_name`: length
300
+ - `ddp_find_unused_parameters`: None
301
+ - `ddp_bucket_cap_mb`: None
302
+ - `ddp_broadcast_buffers`: False
303
+ - `dataloader_pin_memory`: True
304
+ - `dataloader_persistent_workers`: False
305
+ - `skip_memory_metrics`: True
306
+ - `use_legacy_prediction_loop`: False
307
+ - `push_to_hub`: False
308
+ - `resume_from_checkpoint`: None
309
+ - `hub_model_id`: None
310
+ - `hub_strategy`: every_save
311
+ - `hub_private_repo`: None
312
+ - `hub_always_push`: False
313
+ - `hub_revision`: None
314
+ - `gradient_checkpointing`: False
315
+ - `gradient_checkpointing_kwargs`: None
316
+ - `include_inputs_for_metrics`: False
317
+ - `include_for_metrics`: []
318
+ - `eval_do_concat_batches`: True
319
+ - `fp16_backend`: auto
320
+ - `push_to_hub_model_id`: None
321
+ - `push_to_hub_organization`: None
322
+ - `mp_parameters`:
323
+ - `auto_find_batch_size`: False
324
+ - `full_determinism`: False
325
+ - `torchdynamo`: None
326
+ - `ray_scope`: last
327
+ - `ddp_timeout`: 1800
328
+ - `torch_compile`: False
329
+ - `torch_compile_backend`: None
330
+ - `torch_compile_mode`: None
331
+ - `include_tokens_per_second`: False
332
+ - `include_num_input_tokens_seen`: False
333
+ - `neftune_noise_alpha`: None
334
+ - `optim_target_modules`: None
335
+ - `batch_eval_metrics`: False
336
+ - `eval_on_start`: False
337
+ - `use_liger_kernel`: False
338
+ - `liger_kernel_config`: None
339
+ - `eval_use_gather_object`: False
340
+ - `average_tokens_across_devices`: False
341
+ - `prompts`: None
342
+ - `batch_sampler`: batch_sampler
343
+ - `multi_dataset_batch_sampler`: proportional
344
+ - `router_mapping`: {}
345
+ - `learning_rate_mapping`: {}
346
+
347
+ </details>
348
+
349
+ ### Training Logs
350
+ <details><summary>Click to expand</summary>
351
+
352
+ | Epoch | Step | Training Loss |
353
+ |:------:|:----:|:-------------:|
354
+ | 0.0018 | 1 | 0.2852 |
355
+ | 0.0035 | 2 | 0.3503 |
356
+ | 0.0053 | 3 | 0.0422 |
357
+ | 0.0071 | 4 | 0.1306 |
358
+ | 0.0089 | 5 | 0.1997 |
359
+ | 0.0106 | 6 | 0.0307 |
360
+ | 0.0124 | 7 | 0.1194 |
361
+ | 0.0142 | 8 | 0.114 |
362
+ | 0.0160 | 9 | 0.0128 |
363
+ | 0.0177 | 10 | 0.0523 |
364
+ | 0.0195 | 11 | 0.0228 |
365
+ | 0.0213 | 12 | 0.056 |
366
+ | 0.0230 | 13 | 0.2108 |
367
+ | 0.0248 | 14 | 0.0856 |
368
+ | 0.0266 | 15 | 0.058 |
369
+ | 0.0284 | 16 | 0.0311 |
370
+ | 0.0301 | 17 | 0.015 |
371
+ | 0.0319 | 18 | 0.0098 |
372
+ | 0.0337 | 19 | 0.3063 |
373
+ | 0.0355 | 20 | 0.0124 |
374
+ | 0.0372 | 21 | 0.0151 |
375
+ | 0.0390 | 22 | 0.2788 |
376
+ | 0.0408 | 23 | 0.0228 |
377
+ | 0.0426 | 24 | 0.0634 |
378
+ | 0.0443 | 25 | 0.0482 |
379
+ | 0.0461 | 26 | 0.0647 |
380
+ | 0.0479 | 27 | 0.0045 |
381
+ | 0.0496 | 28 | 0.0315 |
382
+ | 0.0514 | 29 | 0.0316 |
383
+ | 0.0532 | 30 | 0.1654 |
384
+ | 0.0550 | 31 | 0.1931 |
385
+ | 0.0567 | 32 | 0.0157 |
386
+ | 0.0585 | 33 | 0.286 |
387
+ | 0.0603 | 34 | 0.1894 |
388
+ | 0.0621 | 35 | 0.0308 |
389
+ | 0.0638 | 36 | 0.0181 |
390
+ | 0.0656 | 37 | 0.126 |
391
+ | 0.0674 | 38 | 0.0258 |
392
+ | 0.0691 | 39 | 0.0669 |
393
+ | 0.0709 | 40 | 0.0979 |
394
+ | 0.0727 | 41 | 0.1078 |
395
+ | 0.0745 | 42 | 0.3883 |
396
+ | 0.0762 | 43 | 0.0341 |
397
+ | 0.0780 | 44 | 0.0439 |
398
+ | 0.0798 | 45 | 0.0733 |
399
+ | 0.0816 | 46 | 0.399 |
400
+ | 0.0833 | 47 | 0.1246 |
401
+ | 0.0851 | 48 | 0.0095 |
402
+ | 0.0869 | 49 | 0.3253 |
403
+ | 0.0887 | 50 | 0.0405 |
404
+ | 0.0904 | 51 | 0.1117 |
405
+ | 0.0922 | 52 | 0.0389 |
406
+ | 0.0940 | 53 | 0.1124 |
407
+ | 0.0957 | 54 | 0.118 |
408
+ | 0.0975 | 55 | 0.2116 |
409
+ | 0.0993 | 56 | 0.0721 |
410
+ | 0.1011 | 57 | 0.1326 |
411
+ | 0.1028 | 58 | 0.1217 |
412
+ | 0.1046 | 59 | 0.0216 |
413
+ | 0.1064 | 60 | 0.0798 |
414
+ | 0.1082 | 61 | 0.1676 |
415
+ | 0.1099 | 62 | 0.0314 |
416
+ | 0.1117 | 63 | 0.045 |
417
+ | 0.1135 | 64 | 0.0325 |
418
+ | 0.1152 | 65 | 0.0624 |
419
+ | 0.1170 | 66 | 0.0282 |
420
+ | 0.1188 | 67 | 0.0164 |
421
+ | 0.1206 | 68 | 0.0632 |
422
+ | 0.1223 | 69 | 0.1402 |
423
+ | 0.1241 | 70 | 0.0271 |
424
+ | 0.1259 | 71 | 0.0449 |
425
+ | 0.1277 | 72 | 0.0107 |
426
+ | 0.1294 | 73 | 0.0531 |
427
+ | 0.1312 | 74 | 0.0489 |
428
+ | 0.1330 | 75 | 0.1134 |
429
+ | 0.1348 | 76 | 0.0657 |
430
+ | 0.1365 | 77 | 0.0383 |
431
+ | 0.1383 | 78 | 0.0288 |
432
+ | 0.1401 | 79 | 0.0514 |
433
+ | 0.1418 | 80 | 0.0173 |
434
+ | 0.1436 | 81 | 0.1886 |
435
+ | 0.1454 | 82 | 0.0532 |
436
+ | 0.1472 | 83 | 0.0024 |
437
+ | 0.1489 | 84 | 0.0076 |
438
+ | 0.1507 | 85 | 0.1116 |
439
+ | 0.1525 | 86 | 0.0089 |
440
+ | 0.1543 | 87 | 0.4592 |
441
+ | 0.1560 | 88 | 0.0552 |
442
+ | 0.1578 | 89 | 0.0327 |
443
+ | 0.1596 | 90 | 0.1102 |
444
+ | 0.1613 | 91 | 0.0077 |
445
+ | 0.1631 | 92 | 0.0048 |
446
+ | 0.1649 | 93 | 0.003 |
447
+ | 0.1667 | 94 | 0.0042 |
448
+ | 0.1684 | 95 | 0.1047 |
449
+ | 0.1702 | 96 | 0.0212 |
450
+ | 0.1720 | 97 | 0.0287 |
451
+ | 0.1738 | 98 | 0.0233 |
452
+ | 0.1755 | 99 | 0.0319 |
453
+ | 0.1773 | 100 | 0.0206 |
454
+ | 0.1791 | 101 | 0.018 |
455
+ | 0.1809 | 102 | 0.059 |
456
+ | 0.1826 | 103 | 0.172 |
457
+ | 0.1844 | 104 | 0.1555 |
458
+ | 0.1862 | 105 | 0.0479 |
459
+ | 0.1879 | 106 | 0.0336 |
460
+ | 0.1897 | 107 | 0.0889 |
461
+ | 0.1915 | 108 | 0.0094 |
462
+ | 0.1933 | 109 | 0.053 |
463
+ | 0.1950 | 110 | 0.0944 |
464
+ | 0.1968 | 111 | 0.2731 |
465
+ | 0.1986 | 112 | 0.0315 |
466
+ | 0.2004 | 113 | 0.162 |
467
+ | 0.2021 | 114 | 0.1024 |
468
+ | 0.2039 | 115 | 0.013 |
469
+ | 0.2057 | 116 | 0.0998 |
470
+ | 0.2074 | 117 | 0.0035 |
471
+ | 0.2092 | 118 | 0.0035 |
472
+ | 0.2110 | 119 | 0.136 |
473
+ | 0.2128 | 120 | 0.0626 |
474
+ | 0.2145 | 121 | 0.0597 |
475
+ | 0.2163 | 122 | 0.1202 |
476
+ | 0.2181 | 123 | 0.1017 |
477
+ | 0.2199 | 124 | 0.0241 |
478
+ | 0.2216 | 125 | 0.0527 |
479
+ | 0.2234 | 126 | 0.0158 |
480
+ | 0.2252 | 127 | 0.005 |
481
+ | 0.2270 | 128 | 0.3728 |
482
+ | 0.2287 | 129 | 0.0049 |
483
+ | 0.2305 | 130 | 0.0426 |
484
+ | 0.2323 | 131 | 0.1093 |
485
+ | 0.2340 | 132 | 0.0607 |
486
+ | 0.2358 | 133 | 0.0387 |
487
+ | 0.2376 | 134 | 0.0672 |
488
+ | 0.2394 | 135 | 0.0187 |
489
+ | 0.2411 | 136 | 0.1737 |
490
+ | 0.2429 | 137 | 0.042 |
491
+ | 0.2447 | 138 | 0.0934 |
492
+ | 0.2465 | 139 | 0.0135 |
493
+ | 0.2482 | 140 | 0.1649 |
494
+ | 0.25 | 141 | 0.1029 |
495
+ | 0.2518 | 142 | 0.0183 |
496
+ | 0.2535 | 143 | 0.1689 |
497
+ | 0.2553 | 144 | 0.6752 |
498
+ | 0.2571 | 145 | 0.076 |
499
+ | 0.2589 | 146 | 0.0961 |
500
+ | 0.2606 | 147 | 0.127 |
501
+ | 0.2624 | 148 | 0.1866 |
502
+ | 0.2642 | 149 | 0.0652 |
503
+ | 0.2660 | 150 | 0.029 |
504
+ | 0.2677 | 151 | 0.0175 |
505
+ | 0.2695 | 152 | 0.0034 |
506
+ | 0.2713 | 153 | 0.2149 |
507
+ | 0.2730 | 154 | 0.0564 |
508
+ | 0.2748 | 155 | 0.0205 |
509
+ | 0.2766 | 156 | 0.0193 |
510
+ | 0.2784 | 157 | 0.1054 |
511
+ | 0.2801 | 158 | 0.0209 |
512
+ | 0.2819 | 159 | 0.1948 |
513
+ | 0.2837 | 160 | 0.0176 |
514
+ | 0.2855 | 161 | 0.1101 |
515
+ | 0.2872 | 162 | 0.003 |
516
+ | 0.2890 | 163 | 0.0373 |
517
+ | 0.2908 | 164 | 0.1793 |
518
+ | 0.2926 | 165 | 0.0878 |
519
+ | 0.2943 | 166 | 0.0346 |
520
+ | 0.2961 | 167 | 0.0051 |
521
+ | 0.2979 | 168 | 0.2891 |
522
+ | 0.2996 | 169 | 0.2409 |
523
+ | 0.3014 | 170 | 0.0056 |
524
+ | 0.3032 | 171 | 0.0051 |
525
+ | 0.3050 | 172 | 0.1651 |
526
+ | 0.3067 | 173 | 0.0802 |
527
+ | 0.3085 | 174 | 0.1191 |
528
+ | 0.3103 | 175 | 0.0453 |
529
+ | 0.3121 | 176 | 0.0972 |
530
+ | 0.3138 | 177 | 0.0157 |
531
+ | 0.3156 | 178 | 0.0339 |
532
+ | 0.3174 | 179 | 0.0759 |
533
+ | 0.3191 | 180 | 0.196 |
534
+ | 0.3209 | 181 | 0.1043 |
535
+ | 0.3227 | 182 | 0.0603 |
536
+ | 0.3245 | 183 | 0.0163 |
537
+ | 0.3262 | 184 | 0.0115 |
538
+ | 0.3280 | 185 | 0.1027 |
539
+ | 0.3298 | 186 | 0.0726 |
540
+ | 0.3316 | 187 | 0.089 |
541
+ | 0.3333 | 188 | 0.0385 |
542
+ | 0.3351 | 189 | 0.0082 |
543
+ | 0.3369 | 190 | 0.1135 |
544
+ | 0.3387 | 191 | 0.074 |
545
+ | 0.3404 | 192 | 0.1149 |
546
+ | 0.3422 | 193 | 0.1642 |
547
+ | 0.3440 | 194 | 0.0166 |
548
+ | 0.3457 | 195 | 0.0105 |
549
+ | 0.3475 | 196 | 0.0313 |
550
+ | 0.3493 | 197 | 0.1255 |
551
+ | 0.3511 | 198 | 0.0471 |
552
+ | 0.3528 | 199 | 0.067 |
553
+ | 0.3546 | 200 | 0.0227 |
554
+ | 0.3564 | 201 | 0.1239 |
555
+ | 0.3582 | 202 | 0.237 |
556
+ | 0.3599 | 203 | 0.0141 |
557
+ | 0.3617 | 204 | 0.0077 |
558
+ | 0.3635 | 205 | 0.0073 |
559
+ | 0.3652 | 206 | 0.0417 |
560
+ | 0.3670 | 207 | 0.0297 |
561
+ | 0.3688 | 208 | 0.0752 |
562
+ | 0.3706 | 209 | 0.0155 |
563
+ | 0.3723 | 210 | 0.0536 |
564
+ | 0.3741 | 211 | 0.0034 |
565
+ | 0.3759 | 212 | 0.0273 |
566
+ | 0.3777 | 213 | 0.2597 |
567
+ | 0.3794 | 214 | 0.0574 |
568
+ | 0.3812 | 215 | 0.0554 |
569
+ | 0.3830 | 216 | 0.0806 |
570
+ | 0.3848 | 217 | 0.018 |
571
+ | 0.3865 | 218 | 0.215 |
572
+ | 0.3883 | 219 | 0.0527 |
573
+ | 0.3901 | 220 | 0.0025 |
574
+ | 0.3918 | 221 | 0.0459 |
575
+ | 0.3936 | 222 | 0.0074 |
576
+ | 0.3954 | 223 | 0.0603 |
577
+ | 0.3972 | 224 | 0.0092 |
578
+ | 0.3989 | 225 | 0.0832 |
579
+ | 0.4007 | 226 | 0.0144 |
580
+ | 0.4025 | 227 | 0.1483 |
581
+ | 0.4043 | 228 | 0.4177 |
582
+ | 0.4060 | 229 | 0.0061 |
583
+ | 0.4078 | 230 | 0.0034 |
584
+ | 0.4096 | 231 | 0.0917 |
585
+ | 0.4113 | 232 | 0.0039 |
586
+ | 0.4131 | 233 | 0.0369 |
587
+ | 0.4149 | 234 | 0.0619 |
588
+ | 0.4167 | 235 | 0.1598 |
589
+ | 0.4184 | 236 | 0.0699 |
590
+ | 0.4202 | 237 | 0.0641 |
591
+ | 0.4220 | 238 | 0.0162 |
592
+ | 0.4238 | 239 | 0.1175 |
593
+ | 0.4255 | 240 | 0.0043 |
594
+ | 0.4273 | 241 | 0.0171 |
595
+ | 0.4291 | 242 | 0.005 |
596
+ | 0.4309 | 243 | 0.169 |
597
+ | 0.4326 | 244 | 0.0124 |
598
+ | 0.4344 | 245 | 0.1141 |
599
+ | 0.4362 | 246 | 0.0467 |
600
+ | 0.4379 | 247 | 0.0074 |
601
+ | 0.4397 | 248 | 0.2058 |
602
+ | 0.4415 | 249 | 0.0186 |
603
+ | 0.4433 | 250 | 0.0112 |
604
+ | 0.4450 | 251 | 0.2977 |
605
+ | 0.4468 | 252 | 0.0384 |
606
+ | 0.4486 | 253 | 0.1525 |
607
+ | 0.4504 | 254 | 0.2781 |
608
+ | 0.4521 | 255 | 0.1463 |
609
+ | 0.4539 | 256 | 0.1352 |
610
+ | 0.4557 | 257 | 0.0789 |
611
+ | 0.4574 | 258 | 0.013 |
612
+ | 0.4592 | 259 | 0.2722 |
613
+ | 0.4610 | 260 | 0.0701 |
614
+ | 0.4628 | 261 | 0.036 |
615
+ | 0.4645 | 262 | 0.0363 |
616
+ | 0.4663 | 263 | 0.1835 |
617
+ | 0.4681 | 264 | 0.2061 |
618
+ | 0.4699 | 265 | 0.0639 |
619
+ | 0.4716 | 266 | 0.0007 |
620
+ | 0.4734 | 267 | 0.0107 |
621
+ | 0.4752 | 268 | 0.1097 |
622
+ | 0.4770 | 269 | 0.2531 |
623
+ | 0.4787 | 270 | 0.0205 |
624
+ | 0.4805 | 271 | 0.1076 |
625
+ | 0.4823 | 272 | 0.0621 |
626
+ | 0.4840 | 273 | 0.0065 |
627
+ | 0.4858 | 274 | 0.0444 |
628
+ | 0.4876 | 275 | 0.0613 |
629
+ | 0.4894 | 276 | 0.0373 |
630
+ | 0.4911 | 277 | 0.4446 |
631
+ | 0.4929 | 278 | 0.071 |
632
+ | 0.4947 | 279 | 0.0839 |
633
+ | 0.4965 | 280 | 0.2712 |
634
+ | 0.4982 | 281 | 0.3855 |
635
+ | 0.5 | 282 | 0.02 |
636
+ | 0.5018 | 283 | 0.1209 |
637
+ | 0.5035 | 284 | 0.0428 |
638
+ | 0.5053 | 285 | 0.0859 |
639
+ | 0.5071 | 286 | 0.0076 |
640
+ | 0.5089 | 287 | 0.0137 |
641
+ | 0.5106 | 288 | 0.1124 |
642
+ | 0.5124 | 289 | 0.2544 |
643
+ | 0.5142 | 290 | 0.0029 |
644
+ | 0.5160 | 291 | 0.0142 |
645
+ | 0.5177 | 292 | 0.0709 |
646
+ | 0.5195 | 293 | 0.0418 |
647
+ | 0.5213 | 294 | 0.1344 |
648
+ | 0.5230 | 295 | 0.0105 |
649
+ | 0.5248 | 296 | 0.1553 |
650
+ | 0.5266 | 297 | 0.0281 |
651
+ | 0.5284 | 298 | 0.0122 |
652
+ | 0.5301 | 299 | 0.0383 |
653
+ | 0.5319 | 300 | 0.2396 |
654
+ | 0.5337 | 301 | 0.1094 |
655
+ | 0.5355 | 302 | 0.0929 |
656
+ | 0.5372 | 303 | 0.0312 |
657
+ | 0.5390 | 304 | 0.068 |
658
+ | 0.5408 | 305 | 0.0128 |
659
+ | 0.5426 | 306 | 0.127 |
660
+ | 0.5443 | 307 | 0.0414 |
661
+ | 0.5461 | 308 | 0.1497 |
662
+ | 0.5479 | 309 | 0.041 |
663
+ | 0.5496 | 310 | 0.0288 |
664
+ | 0.5514 | 311 | 0.0479 |
665
+ | 0.5532 | 312 | 0.0204 |
666
+ | 0.5550 | 313 | 0.0828 |
667
+ | 0.5567 | 314 | 0.0149 |
668
+ | 0.5585 | 315 | 0.1651 |
669
+ | 0.5603 | 316 | 0.0982 |
670
+ | 0.5621 | 317 | 0.0118 |
671
+ | 0.5638 | 318 | 0.1905 |
672
+ | 0.5656 | 319 | 0.0074 |
673
+ | 0.5674 | 320 | 0.1277 |
674
+ | 0.5691 | 321 | 0.0336 |
675
+ | 0.5709 | 322 | 0.037 |
676
+ | 0.5727 | 323 | 0.0228 |
677
+ | 0.5745 | 324 | 0.5044 |
678
+ | 0.5762 | 325 | 0.2475 |
679
+ | 0.5780 | 326 | 0.0389 |
680
+ | 0.5798 | 327 | 0.0035 |
681
+ | 0.5816 | 328 | 0.0812 |
682
+ | 0.5833 | 329 | 0.1005 |
683
+ | 0.5851 | 330 | 0.3384 |
684
+ | 0.5869 | 331 | 0.0345 |
685
+ | 0.5887 | 332 | 0.0903 |
686
+ | 0.5904 | 333 | 0.0144 |
687
+ | 0.5922 | 334 | 0.0853 |
688
+ | 0.5940 | 335 | 0.1661 |
689
+ | 0.5957 | 336 | 0.0339 |
690
+ | 0.5975 | 337 | 0.0749 |
691
+ | 0.5993 | 338 | 0.2761 |
692
+ | 0.6011 | 339 | 0.0036 |
693
+ | 0.6028 | 340 | 0.0843 |
694
+ | 0.6046 | 341 | 0.0963 |
695
+ | 0.6064 | 342 | 0.0261 |
696
+ | 0.6082 | 343 | 0.0305 |
697
+ | 0.6099 | 344 | 0.0076 |
698
+ | 0.6117 | 345 | 0.006 |
699
+ | 0.6135 | 346 | 0.0034 |
700
+ | 0.6152 | 347 | 0.0278 |
701
+ | 0.6170 | 348 | 0.01 |
702
+ | 0.6188 | 349 | 0.0059 |
703
+ | 0.6206 | 350 | 0.0663 |
704
+ | 0.6223 | 351 | 0.0198 |
705
+ | 0.6241 | 352 | 0.0134 |
706
+ | 0.6259 | 353 | 0.123 |
707
+ | 0.6277 | 354 | 0.0899 |
708
+ | 0.6294 | 355 | 0.0943 |
709
+ | 0.6312 | 356 | 0.011 |
710
+ | 0.6330 | 357 | 0.1238 |
711
+ | 0.6348 | 358 | 0.0283 |
712
+ | 0.6365 | 359 | 0.0248 |
713
+ | 0.6383 | 360 | 0.0365 |
714
+ | 0.6401 | 361 | 0.0349 |
715
+ | 0.6418 | 362 | 0.0183 |
716
+ | 0.6436 | 363 | 0.0106 |
717
+ | 0.6454 | 364 | 0.0523 |
718
+ | 0.6472 | 365 | 0.1742 |
719
+ | 0.6489 | 366 | 0.1366 |
720
+ | 0.6507 | 367 | 0.2887 |
721
+ | 0.6525 | 368 | 0.0802 |
722
+ | 0.6543 | 369 | 0.0532 |
723
+ | 0.6560 | 370 | 0.1194 |
724
+ | 0.6578 | 371 | 0.0648 |
725
+ | 0.6596 | 372 | 0.1022 |
726
+ | 0.6613 | 373 | 0.0596 |
727
+ | 0.6631 | 374 | 0.1083 |
728
+ | 0.6649 | 375 | 0.0121 |
729
+ | 0.6667 | 376 | 0.0448 |
730
+ | 0.6684 | 377 | 0.0261 |
731
+ | 0.6702 | 378 | 0.1448 |
732
+ | 0.6720 | 379 | 0.0822 |
733
+ | 0.6738 | 380 | 0.0141 |
734
+ | 0.6755 | 381 | 0.0187 |
735
+ | 0.6773 | 382 | 0.0639 |
736
+ | 0.6791 | 383 | 0.3279 |
737
+ | 0.6809 | 384 | 0.0084 |
738
+ | 0.6826 | 385 | 0.0256 |
739
+ | 0.6844 | 386 | 0.0886 |
740
+ | 0.6862 | 387 | 0.0671 |
741
+ | 0.6879 | 388 | 0.0365 |
742
+ | 0.6897 | 389 | 0.0112 |
743
+ | 0.6915 | 390 | 0.018 |
744
+ | 0.6933 | 391 | 0.2417 |
745
+ | 0.6950 | 392 | 0.1742 |
746
+ | 0.6968 | 393 | 0.0083 |
747
+ | 0.6986 | 394 | 0.0202 |
748
+ | 0.7004 | 395 | 0.0371 |
749
+ | 0.7021 | 396 | 0.0249 |
750
+ | 0.7039 | 397 | 0.019 |
751
+ | 0.7057 | 398 | 0.0546 |
752
+ | 0.7074 | 399 | 0.0287 |
753
+ | 0.7092 | 400 | 0.0234 |
754
+ | 0.7110 | 401 | 0.005 |
755
+ | 0.7128 | 402 | 0.0089 |
756
+ | 0.7145 | 403 | 0.0097 |
757
+ | 0.7163 | 404 | 0.0545 |
758
+ | 0.7181 | 405 | 0.0079 |
759
+ | 0.7199 | 406 | 0.2158 |
760
+ | 0.7216 | 407 | 0.0216 |
761
+ | 0.7234 | 408 | 0.0033 |
762
+ | 0.7252 | 409 | 0.0313 |
763
+ | 0.7270 | 410 | 0.0527 |
764
+ | 0.7287 | 411 | 0.1268 |
765
+ | 0.7305 | 412 | 0.0025 |
766
+ | 0.7323 | 413 | 0.0597 |
767
+ | 0.7340 | 414 | 0.0291 |
768
+ | 0.7358 | 415 | 0.0219 |
769
+ | 0.7376 | 416 | 0.0818 |
770
+ | 0.7394 | 417 | 0.1946 |
771
+ | 0.7411 | 418 | 0.5806 |
772
+ | 0.7429 | 419 | 0.0348 |
773
+ | 0.7447 | 420 | 0.0138 |
774
+ | 0.7465 | 421 | 0.0445 |
775
+ | 0.7482 | 422 | 0.639 |
776
+ | 0.75 | 423 | 0.028 |
777
+ | 0.7518 | 424 | 0.1737 |
778
+ | 0.7535 | 425 | 0.0038 |
779
+ | 0.7553 | 426 | 0.014 |
780
+ | 0.7571 | 427 | 0.1141 |
781
+ | 0.7589 | 428 | 0.0936 |
782
+ | 0.7606 | 429 | 0.0724 |
783
+ | 0.7624 | 430 | 0.0438 |
784
+ | 0.7642 | 431 | 0.0044 |
785
+ | 0.7660 | 432 | 0.003 |
786
+ | 0.7677 | 433 | 0.0147 |
787
+ | 0.7695 | 434 | 0.1538 |
788
+ | 0.7713 | 435 | 0.0203 |
789
+ | 0.7730 | 436 | 0.0223 |
790
+ | 0.7748 | 437 | 0.0056 |
791
+ | 0.7766 | 438 | 0.0114 |
792
+ | 0.7784 | 439 | 0.0097 |
793
+ | 0.7801 | 440 | 0.0169 |
794
+ | 0.7819 | 441 | 0.0453 |
795
+ | 0.7837 | 442 | 0.1687 |
796
+ | 0.7855 | 443 | 0.1222 |
797
+ | 0.7872 | 444 | 0.0091 |
798
+ | 0.7890 | 445 | 0.0155 |
799
+ | 0.7908 | 446 | 0.1198 |
800
+ | 0.7926 | 447 | 0.0922 |
801
+ | 0.7943 | 448 | 0.017 |
802
+ | 0.7961 | 449 | 0.0853 |
803
+ | 0.7979 | 450 | 0.0946 |
804
+ | 0.7996 | 451 | 0.0558 |
805
+ | 0.8014 | 452 | 0.0229 |
806
+ | 0.8032 | 453 | 0.0062 |
807
+ | 0.8050 | 454 | 0.0175 |
808
+ | 0.8067 | 455 | 0.0339 |
809
+ | 0.8085 | 456 | 0.0445 |
810
+ | 0.8103 | 457 | 0.0411 |
811
+ | 0.8121 | 458 | 0.0037 |
812
+ | 0.8138 | 459 | 0.0244 |
813
+ | 0.8156 | 460 | 0.0358 |
814
+ | 0.8174 | 461 | 0.062 |
815
+ | 0.8191 | 462 | 0.0201 |
816
+ | 0.8209 | 463 | 0.0055 |
817
+ | 0.8227 | 464 | 0.152 |
818
+ | 0.8245 | 465 | 0.0032 |
819
+ | 0.8262 | 466 | 0.2056 |
820
+ | 0.8280 | 467 | 0.0245 |
821
+ | 0.8298 | 468 | 0.0239 |
822
+ | 0.8316 | 469 | 0.0323 |
823
+ | 0.8333 | 470 | 0.2737 |
824
+ | 0.8351 | 471 | 0.0205 |
825
+ | 0.8369 | 472 | 0.0037 |
826
+ | 0.8387 | 473 | 0.2092 |
827
+ | 0.8404 | 474 | 0.0659 |
828
+ | 0.8422 | 475 | 0.0361 |
829
+ | 0.8440 | 476 | 0.0845 |
830
+ | 0.8457 | 477 | 0.015 |
831
+ | 0.8475 | 478 | 0.0055 |
832
+ | 0.8493 | 479 | 0.0012 |
833
+ | 0.8511 | 480 | 0.0241 |
834
+ | 0.8528 | 481 | 0.1986 |
835
+ | 0.8546 | 482 | 0.1794 |
836
+ | 0.8564 | 483 | 0.0477 |
837
+ | 0.8582 | 484 | 0.1216 |
838
+ | 0.8599 | 485 | 0.0423 |
839
+ | 0.8617 | 486 | 0.0124 |
840
+ | 0.8635 | 487 | 0.0724 |
841
+ | 0.8652 | 488 | 0.3665 |
842
+ | 0.8670 | 489 | 0.0338 |
843
+ | 0.8688 | 490 | 0.0327 |
844
+ | 0.8706 | 491 | 0.0875 |
845
+ | 0.8723 | 492 | 0.1198 |
846
+ | 0.8741 | 493 | 0.0959 |
847
+ | 0.8759 | 494 | 0.4752 |
848
+ | 0.8777 | 495 | 0.0248 |
849
+ | 0.8794 | 496 | 0.0955 |
850
+ | 0.8812 | 497 | 0.0988 |
851
+ | 0.8830 | 498 | 0.0053 |
852
+ | 0.8848 | 499 | 0.2546 |
853
+ | 0.8865 | 500 | 0.2137 |
854
+ | 0.8883 | 501 | 0.0013 |
855
+ | 0.8901 | 502 | 0.0053 |
856
+ | 0.8918 | 503 | 0.0021 |
857
+ | 0.8936 | 504 | 0.0357 |
858
+ | 0.8954 | 505 | 0.1408 |
859
+ | 0.8972 | 506 | 0.0475 |
860
+ | 0.8989 | 507 | 0.0041 |
861
+ | 0.9007 | 508 | 0.1138 |
862
+ | 0.9025 | 509 | 0.1568 |
863
+ | 0.9043 | 510 | 0.0094 |
864
+ | 0.9060 | 511 | 0.0015 |
865
+ | 0.9078 | 512 | 0.028 |
866
+ | 0.9096 | 513 | 0.2884 |
867
+ | 0.9113 | 514 | 0.0929 |
868
+ | 0.9131 | 515 | 0.2441 |
869
+ | 0.9149 | 516 | 0.0067 |
870
+ | 0.9167 | 517 | 0.0327 |
871
+ | 0.9184 | 518 | 0.029 |
872
+ | 0.9202 | 519 | 0.0835 |
873
+ | 0.9220 | 520 | 0.006 |
874
+ | 0.9238 | 521 | 0.0103 |
875
+ | 0.9255 | 522 | 0.1339 |
876
+ | 0.9273 | 523 | 0.0084 |
877
+ | 0.9291 | 524 | 0.0101 |
878
+ | 0.9309 | 525 | 0.0053 |
879
+ | 0.9326 | 526 | 0.0236 |
880
+ | 0.9344 | 527 | 0.0927 |
881
+ | 0.9362 | 528 | 0.0636 |
882
+ | 0.9379 | 529 | 0.1854 |
883
+ | 0.9397 | 530 | 0.117 |
884
+ | 0.9415 | 531 | 0.0115 |
885
+ | 0.9433 | 532 | 0.1472 |
886
+ | 0.9450 | 533 | 0.0226 |
887
+ | 0.9468 | 534 | 0.0531 |
888
+ | 0.9486 | 535 | 0.0272 |
889
+ | 0.9504 | 536 | 0.0213 |
890
+ | 0.9521 | 537 | 0.008 |
891
+ | 0.9539 | 538 | 0.0244 |
892
+ | 0.9557 | 539 | 0.0061 |
893
+ | 0.9574 | 540 | 0.0987 |
894
+ | 0.9592 | 541 | 0.021 |
895
+ | 0.9610 | 542 | 0.0556 |
896
+ | 0.9628 | 543 | 0.0214 |
897
+ | 0.9645 | 544 | 0.1886 |
898
+ | 0.9663 | 545 | 0.1871 |
899
+ | 0.9681 | 546 | 0.1497 |
900
+ | 0.9699 | 547 | 0.2943 |
901
+ | 0.9716 | 548 | 0.0207 |
902
+ | 0.9734 | 549 | 0.0032 |
903
+ | 0.9752 | 550 | 0.066 |
904
+ | 0.9770 | 551 | 0.0986 |
905
+ | 0.9787 | 552 | 0.0255 |
906
+ | 0.9805 | 553 | 0.1584 |
907
+ | 0.9823 | 554 | 0.0939 |
908
+ | 0.9840 | 555 | 0.0543 |
909
+ | 0.9858 | 556 | 0.0293 |
910
+ | 0.9876 | 557 | 0.1172 |
911
+ | 0.9894 | 558 | 0.0345 |
912
+ | 0.9911 | 559 | 0.0188 |
913
+ | 0.9929 | 560 | 0.0108 |
914
+ | 0.9947 | 561 | 0.0069 |
915
+ | 0.9965 | 562 | 0.0965 |
916
+ | 0.9982 | 563 | 0.1211 |
917
+ | 1.0 | 564 | 0.0011 |
918
+ | 1.0018 | 565 | 0.002 |
919
+ | 1.0035 | 566 | 0.0409 |
920
+ | 1.0053 | 567 | 0.0062 |
921
+ | 1.0071 | 568 | 0.0074 |
922
+ | 1.0089 | 569 | 0.0012 |
923
+ | 1.0106 | 570 | 0.0454 |
924
+ | 1.0124 | 571 | 0.0017 |
925
+ | 1.0142 | 572 | 0.0727 |
926
+ | 1.0160 | 573 | 0.0096 |
927
+ | 1.0177 | 574 | 0.1944 |
928
+ | 1.0195 | 575 | 0.0129 |
929
+ | 1.0213 | 576 | 0.0077 |
930
+ | 1.0230 | 577 | 0.0203 |
931
+ | 1.0248 | 578 | 0.046 |
932
+ | 1.0266 | 579 | 0.0011 |
933
+ | 1.0284 | 580 | 0.0014 |
934
+ | 1.0301 | 581 | 0.002 |
935
+ | 1.0319 | 582 | 0.0362 |
936
+ | 1.0337 | 583 | 0.0023 |
937
+ | 1.0355 | 584 | 0.0055 |
938
+ | 1.0372 | 585 | 0.1081 |
939
+ | 1.0390 | 586 | 0.1659 |
940
+ | 1.0408 | 587 | 0.012 |
941
+ | 1.0426 | 588 | 0.0225 |
942
+ | 1.0443 | 589 | 0.1943 |
943
+ | 1.0461 | 590 | 0.0045 |
944
+ | 1.0479 | 591 | 0.0024 |
945
+ | 1.0496 | 592 | 0.1368 |
946
+ | 1.0514 | 593 | 0.0895 |
947
+ | 1.0532 | 594 | 0.2384 |
948
+ | 1.0550 | 595 | 0.0842 |
949
+ | 1.0567 | 596 | 0.0669 |
950
+ | 1.0585 | 597 | 0.0039 |
951
+ | 1.0603 | 598 | 0.0031 |
952
+ | 1.0621 | 599 | 0.0044 |
953
+ | 1.0638 | 600 | 0.1103 |
954
+ | 1.0656 | 601 | 0.0232 |
955
+ | 1.0674 | 602 | 0.0644 |
956
+ | 1.0691 | 603 | 0.0104 |
957
+ | 1.0709 | 604 | 0.0383 |
958
+ | 1.0727 | 605 | 0.1454 |
959
+ | 1.0745 | 606 | 0.0123 |
960
+ | 1.0762 | 607 | 0.0094 |
961
+ | 1.0780 | 608 | 0.0247 |
962
+ | 1.0798 | 609 | 0.0473 |
963
+ | 1.0816 | 610 | 0.0212 |
964
+ | 1.0833 | 611 | 0.0506 |
965
+ | 1.0851 | 612 | 0.0854 |
966
+ | 1.0869 | 613 | 0.021 |
967
+ | 1.0887 | 614 | 0.012 |
968
+ | 1.0904 | 615 | 0.012 |
969
+ | 1.0922 | 616 | 0.1787 |
970
+ | 1.0940 | 617 | 0.0229 |
971
+ | 1.0957 | 618 | 0.0123 |
972
+ | 1.0975 | 619 | 0.0381 |
973
+ | 1.0993 | 620 | 0.1896 |
974
+ | 1.1011 | 621 | 0.1764 |
975
+ | 1.1028 | 622 | 0.0046 |
976
+ | 1.1046 | 623 | 0.0075 |
977
+ | 1.1064 | 624 | 0.013 |
978
+ | 1.1082 | 625 | 0.0592 |
979
+ | 1.1099 | 626 | 0.0127 |
980
+ | 1.1117 | 627 | 0.0952 |
981
+ | 1.1135 | 628 | 0.0051 |
982
+ | 1.1152 | 629 | 0.1906 |
983
+ | 1.1170 | 630 | 0.0105 |
984
+ | 1.1188 | 631 | 0.0526 |
985
+ | 1.1206 | 632 | 0.1145 |
986
+ | 1.1223 | 633 | 0.0086 |
987
+ | 1.1241 | 634 | 0.0669 |
988
+ | 1.1259 | 635 | 0.0183 |
989
+ | 1.1277 | 636 | 0.0424 |
990
+ | 1.1294 | 637 | 0.0444 |
991
+ | 1.1312 | 638 | 0.0085 |
992
+ | 1.1330 | 639 | 0.0057 |
993
+ | 1.1348 | 640 | 0.0067 |
994
+ | 1.1365 | 641 | 0.0007 |
995
+ | 1.1383 | 642 | 0.0052 |
996
+ | 1.1401 | 643 | 0.0066 |
997
+ | 1.1418 | 644 | 0.0005 |
998
+ | 1.1436 | 645 | 0.0011 |
999
+ | 1.1454 | 646 | 0.0872 |
1000
+ | 1.1472 | 647 | 0.0125 |
1001
+ | 1.1489 | 648 | 0.0985 |
1002
+ | 1.1507 | 649 | 0.0628 |
1003
+ | 1.1525 | 650 | 0.0313 |
1004
+ | 1.1543 | 651 | 0.0083 |
1005
+ | 1.1560 | 652 | 0.0379 |
1006
+ | 1.1578 | 653 | 0.0314 |
1007
+ | 1.1596 | 654 | 0.0029 |
1008
+ | 1.1613 | 655 | 0.0078 |
1009
+ | 1.1631 | 656 | 0.1272 |
1010
+ | 1.1649 | 657 | 0.0167 |
1011
+ | 1.1667 | 658 | 0.12 |
1012
+ | 1.1684 | 659 | 0.0224 |
1013
+ | 1.1702 | 660 | 0.0193 |
1014
+ | 1.1720 | 661 | 0.0104 |
1015
+ | 1.1738 | 662 | 0.022 |
1016
+ | 1.1755 | 663 | 0.1915 |
1017
+ | 1.1773 | 664 | 0.0466 |
1018
+ | 1.1791 | 665 | 0.024 |
1019
+ | 1.1809 | 666 | 0.0385 |
1020
+ | 1.1826 | 667 | 0.0914 |
1021
+ | 1.1844 | 668 | 0.0364 |
1022
+ | 1.1862 | 669 | 0.0165 |
1023
+ | 1.1879 | 670 | 0.003 |
1024
+ | 1.1897 | 671 | 0.0111 |
1025
+ | 1.1915 | 672 | 0.0097 |
1026
+ | 1.1933 | 673 | 0.0354 |
1027
+ | 1.1950 | 674 | 0.0496 |
1028
+ | 1.1968 | 675 | 0.0767 |
1029
+ | 1.1986 | 676 | 0.0138 |
1030
+ | 1.2004 | 677 | 0.0441 |
1031
+ | 1.2021 | 678 | 0.0036 |
1032
+ | 1.2039 | 679 | 0.0078 |
1033
+ | 1.2057 | 680 | 0.0104 |
1034
+ | 1.2074 | 681 | 0.0121 |
1035
+ | 1.2092 | 682 | 0.1018 |
1036
+ | 1.2110 | 683 | 0.0146 |
1037
+ | 1.2128 | 684 | 0.0025 |
1038
+ | 1.2145 | 685 | 0.0145 |
1039
+ | 1.2163 | 686 | 0.0205 |
1040
+ | 1.2181 | 687 | 0.124 |
1041
+ | 1.2199 | 688 | 0.0165 |
1042
+ | 1.2216 | 689 | 0.1345 |
1043
+ | 1.2234 | 690 | 0.0104 |
1044
+ | 1.2252 | 691 | 0.0056 |
1045
+ | 1.2270 | 692 | 0.001 |
1046
+ | 1.2287 | 693 | 0.0047 |
1047
+ | 1.2305 | 694 | 0.0218 |
1048
+ | 1.2323 | 695 | 0.0161 |
1049
+ | 1.2340 | 696 | 0.0163 |
1050
+ | 1.2358 | 697 | 0.0214 |
1051
+ | 1.2376 | 698 | 0.0059 |
1052
+ | 1.2394 | 699 | 0.001 |
1053
+ | 1.2411 | 700 | 0.0069 |
1054
+ | 1.2429 | 701 | 0.0011 |
1055
+ | 1.2447 | 702 | 0.0345 |
1056
+ | 1.2465 | 703 | 0.0061 |
1057
+ | 1.2482 | 704 | 0.1855 |
1058
+ | 1.25 | 705 | 0.0193 |
1059
+ | 1.2518 | 706 | 0.0076 |
1060
+ | 1.2535 | 707 | 0.1165 |
1061
+ | 1.2553 | 708 | 0.0278 |
1062
+ | 1.2571 | 709 | 0.0039 |
1063
+ | 1.2589 | 710 | 0.0241 |
1064
+ | 1.2606 | 711 | 0.0419 |
1065
+ | 1.2624 | 712 | 0.0079 |
1066
+ | 1.2642 | 713 | 0.0148 |
1067
+ | 1.2660 | 714 | 0.0333 |
1068
+ | 1.2677 | 715 | 0.0133 |
1069
+ | 1.2695 | 716 | 0.2561 |
1070
+ | 1.2713 | 717 | 0.0353 |
1071
+ | 1.2730 | 718 | 0.0035 |
1072
+ | 1.2748 | 719 | 0.0142 |
1073
+ | 1.2766 | 720 | 0.0843 |
1074
+ | 1.2784 | 721 | 0.0074 |
1075
+ | 1.2801 | 722 | 0.0117 |
1076
+ | 1.2819 | 723 | 0.014 |
1077
+ | 1.2837 | 724 | 0.0197 |
1078
+ | 1.2855 | 725 | 0.0235 |
1079
+ | 1.2872 | 726 | 0.0243 |
1080
+ | 1.2890 | 727 | 0.0023 |
1081
+ | 1.2908 | 728 | 0.0048 |
1082
+ | 1.2926 | 729 | 0.056 |
1083
+ | 1.2943 | 730 | 0.0517 |
1084
+ | 1.2961 | 731 | 0.0073 |
1085
+ | 1.2979 | 732 | 0.2383 |
1086
+ | 1.2996 | 733 | 0.0165 |
1087
+ | 1.3014 | 734 | 0.0703 |
1088
+ | 1.3032 | 735 | 0.0091 |
1089
+ | 1.3050 | 736 | 0.0447 |
1090
+ | 1.3067 | 737 | 0.0504 |
1091
+ | 1.3085 | 738 | 0.0279 |
1092
+ | 1.3103 | 739 | 0.257 |
1093
+ | 1.3121 | 740 | 0.0372 |
1094
+ | 1.3138 | 741 | 0.0111 |
1095
+ | 1.3156 | 742 | 0.0229 |
1096
+ | 1.3174 | 743 | 0.062 |
1097
+ | 1.3191 | 744 | 0.0186 |
1098
+ | 1.3209 | 745 | 0.05 |
1099
+ | 1.3227 | 746 | 0.0029 |
1100
+ | 1.3245 | 747 | 0.0355 |
1101
+ | 1.3262 | 748 | 0.097 |
1102
+ | 1.3280 | 749 | 0.1409 |
1103
+ | 1.3298 | 750 | 0.0811 |
1104
+ | 1.3316 | 751 | 0.0475 |
1105
+ | 1.3333 | 752 | 0.0023 |
1106
+ | 1.3351 | 753 | 0.0034 |
1107
+ | 1.3369 | 754 | 0.0022 |
1108
+ | 1.3387 | 755 | 0.0307 |
1109
+ | 1.3404 | 756 | 0.1478 |
1110
+ | 1.3422 | 757 | 0.0311 |
1111
+ | 1.3440 | 758 | 0.0016 |
1112
+ | 1.3457 | 759 | 0.018 |
1113
+ | 1.3475 | 760 | 0.0024 |
1114
+ | 1.3493 | 761 | 0.0067 |
1115
+ | 1.3511 | 762 | 0.0209 |
1116
+ | 1.3528 | 763 | 0.0405 |
1117
+ | 1.3546 | 764 | 0.093 |
1118
+ | 1.3564 | 765 | 0.0069 |
1119
+ | 1.3582 | 766 | 0.0552 |
1120
+ | 1.3599 | 767 | 0.011 |
1121
+ | 1.3617 | 768 | 0.0035 |
1122
+ | 1.3635 | 769 | 0.014 |
1123
+ | 1.3652 | 770 | 0.0235 |
1124
+ | 1.3670 | 771 | 0.0304 |
1125
+ | 1.3688 | 772 | 0.019 |
1126
+ | 1.3706 | 773 | 0.0307 |
1127
+ | 1.3723 | 774 | 0.0089 |
1128
+ | 1.3741 | 775 | 0.0035 |
1129
+ | 1.3759 | 776 | 0.0021 |
1130
+ | 1.3777 | 777 | 0.0014 |
1131
+ | 1.3794 | 778 | 0.0068 |
1132
+ | 1.3812 | 779 | 0.0065 |
1133
+ | 1.3830 | 780 | 0.0176 |
1134
+ | 1.3848 | 781 | 0.0297 |
1135
+ | 1.3865 | 782 | 0.0025 |
1136
+ | 1.3883 | 783 | 0.0102 |
1137
+ | 1.3901 | 784 | 0.0141 |
1138
+ | 1.3918 | 785 | 0.0854 |
1139
+ | 1.3936 | 786 | 0.0044 |
1140
+ | 1.3954 | 787 | 0.0287 |
1141
+ | 1.3972 | 788 | 0.0145 |
1142
+ | 1.3989 | 789 | 0.0055 |
1143
+ | 1.4007 | 790 | 0.0121 |
1144
+ | 1.4025 | 791 | 0.0038 |
1145
+ | 1.4043 | 792 | 0.1916 |
1146
+ | 1.4060 | 793 | 0.0804 |
1147
+ | 1.4078 | 794 | 0.1413 |
1148
+ | 1.4096 | 795 | 0.0272 |
1149
+ | 1.4113 | 796 | 0.0349 |
1150
+ | 1.4131 | 797 | 0.0203 |
1151
+ | 1.4149 | 798 | 0.0053 |
1152
+ | 1.4167 | 799 | 0.0008 |
1153
+ | 1.4184 | 800 | 0.0259 |
1154
+ | 1.4202 | 801 | 0.0209 |
1155
+ | 1.4220 | 802 | 0.1249 |
1156
+ | 1.4238 | 803 | 0.4471 |
1157
+ | 1.4255 | 804 | 0.012 |
1158
+ | 1.4273 | 805 | 0.1615 |
1159
+ | 1.4291 | 806 | 0.0353 |
1160
+ | 1.4309 | 807 | 0.0295 |
1161
+ | 1.4326 | 808 | 0.0089 |
1162
+ | 1.4344 | 809 | 0.0033 |
1163
+ | 1.4362 | 810 | 0.0012 |
1164
+ | 1.4379 | 811 | 0.0091 |
1165
+ | 1.4397 | 812 | 0.0327 |
1166
+ | 1.4415 | 813 | 0.0829 |
1167
+ | 1.4433 | 814 | 0.1153 |
1168
+ | 1.4450 | 815 | 0.013 |
1169
+ | 1.4468 | 816 | 0.041 |
1170
+ | 1.4486 | 817 | 0.003 |
1171
+ | 1.4504 | 818 | 0.2116 |
1172
+ | 1.4521 | 819 | 0.0278 |
1173
+ | 1.4539 | 820 | 0.0026 |
1174
+ | 1.4557 | 821 | 0.1155 |
1175
+ | 1.4574 | 822 | 0.0901 |
1176
+ | 1.4592 | 823 | 0.0081 |
1177
+ | 1.4610 | 824 | 0.0013 |
1178
+ | 1.4628 | 825 | 0.0867 |
1179
+ | 1.4645 | 826 | 0.0798 |
1180
+ | 1.4663 | 827 | 0.0015 |
1181
+ | 1.4681 | 828 | 0.0025 |
1182
+ | 1.4699 | 829 | 0.0063 |
1183
+ | 1.4716 | 830 | 0.0102 |
1184
+ | 1.4734 | 831 | 0.0041 |
1185
+ | 1.4752 | 832 | 0.021 |
1186
+ | 1.4770 | 833 | 0.0392 |
1187
+ | 1.4787 | 834 | 0.0058 |
1188
+ | 1.4805 | 835 | 0.0086 |
1189
+ | 1.4823 | 836 | 0.0084 |
1190
+ | 1.4840 | 837 | 0.0568 |
1191
+ | 1.4858 | 838 | 0.0127 |
1192
+ | 1.4876 | 839 | 0.0653 |
1193
+ | 1.4894 | 840 | 0.0042 |
1194
+ | 1.4911 | 841 | 0.0164 |
1195
+ | 1.4929 | 842 | 0.026 |
1196
+ | 1.4947 | 843 | 0.0515 |
1197
+ | 1.4965 | 844 | 0.0074 |
1198
+ | 1.4982 | 845 | 0.0254 |
1199
+ | 1.5 | 846 | 0.0906 |
1200
+ | 1.5018 | 847 | 0.0311 |
1201
+ | 1.5035 | 848 | 0.0096 |
1202
+ | 1.5053 | 849 | 0.0909 |
1203
+ | 1.5071 | 850 | 0.0124 |
1204
+ | 1.5089 | 851 | 0.0373 |
1205
+ | 1.5106 | 852 | 0.001 |
1206
+ | 1.5124 | 853 | 0.0202 |
1207
+ | 1.5142 | 854 | 0.1159 |
1208
+ | 1.5160 | 855 | 0.0006 |
1209
+ | 1.5177 | 856 | 0.0211 |
1210
+ | 1.5195 | 857 | 0.0173 |
1211
+ | 1.5213 | 858 | 0.0029 |
1212
+ | 1.5230 | 859 | 0.0107 |
1213
+ | 1.5248 | 860 | 0.0249 |
1214
+ | 1.5266 | 861 | 0.0071 |
1215
+ | 1.5284 | 862 | 0.0392 |
1216
+ | 1.5301 | 863 | 0.0051 |
1217
+ | 1.5319 | 864 | 0.0157 |
1218
+ | 1.5337 | 865 | 0.2098 |
1219
+ | 1.5355 | 866 | 0.1102 |
1220
+ | 1.5372 | 867 | 0.0141 |
1221
+ | 1.5390 | 868 | 0.0158 |
1222
+ | 1.5408 | 869 | 0.0014 |
1223
+ | 1.5426 | 870 | 0.0045 |
1224
+ | 1.5443 | 871 | 0.0085 |
1225
+ | 1.5461 | 872 | 0.0184 |
1226
+ | 1.5479 | 873 | 0.0147 |
1227
+ | 1.5496 | 874 | 0.0018 |
1228
+ | 1.5514 | 875 | 0.0235 |
1229
+ | 1.5532 | 876 | 0.0464 |
1230
+ | 1.5550 | 877 | 0.0249 |
1231
+ | 1.5567 | 878 | 0.0027 |
1232
+ | 1.5585 | 879 | 0.0209 |
1233
+ | 1.5603 | 880 | 0.0672 |
1234
+ | 1.5621 | 881 | 0.0032 |
1235
+ | 1.5638 | 882 | 0.0032 |
1236
+ | 1.5656 | 883 | 0.0297 |
1237
+ | 1.5674 | 884 | 0.0121 |
1238
+ | 1.5691 | 885 | 0.0192 |
1239
+ | 1.5709 | 886 | 0.0153 |
1240
+ | 1.5727 | 887 | 0.0016 |
1241
+ | 1.5745 | 888 | 0.041 |
1242
+ | 1.5762 | 889 | 0.099 |
1243
+ | 1.5780 | 890 | 0.1625 |
1244
+ | 1.5798 | 891 | 0.0037 |
1245
+ | 1.5816 | 892 | 0.1435 |
1246
+ | 1.5833 | 893 | 0.2743 |
1247
+ | 1.5851 | 894 | 0.0027 |
1248
+ | 1.5869 | 895 | 0.01 |
1249
+ | 1.5887 | 896 | 0.0556 |
1250
+ | 1.5904 | 897 | 0.0019 |
1251
+ | 1.5922 | 898 | 0.0127 |
1252
+ | 1.5940 | 899 | 0.0183 |
1253
+ | 1.5957 | 900 | 0.0128 |
1254
+ | 1.5975 | 901 | 0.0136 |
1255
+ | 1.5993 | 902 | 0.0423 |
1256
+ | 1.6011 | 903 | 0.0053 |
1257
+ | 1.6028 | 904 | 0.0356 |
1258
+ | 1.6046 | 905 | 0.1253 |
1259
+ | 1.6064 | 906 | 0.0055 |
1260
+ | 1.6082 | 907 | 0.0966 |
1261
+ | 1.6099 | 908 | 0.0426 |
1262
+ | 1.6117 | 909 | 0.1751 |
1263
+ | 1.6135 | 910 | 0.0049 |
1264
+ | 1.6152 | 911 | 0.0591 |
1265
+ | 1.6170 | 912 | 0.0198 |
1266
+ | 1.6188 | 913 | 0.2293 |
1267
+ | 1.6206 | 914 | 0.0449 |
1268
+ | 1.6223 | 915 | 0.0107 |
1269
+ | 1.6241 | 916 | 0.0974 |
1270
+ | 1.6259 | 917 | 0.001 |
1271
+ | 1.6277 | 918 | 0.0063 |
1272
+ | 1.6294 | 919 | 0.0022 |
1273
+ | 1.6312 | 920 | 0.1739 |
1274
+ | 1.6330 | 921 | 0.005 |
1275
+ | 1.6348 | 922 | 0.0028 |
1276
+ | 1.6365 | 923 | 0.1195 |
1277
+ | 1.6383 | 924 | 0.0656 |
1278
+ | 1.6401 | 925 | 0.0033 |
1279
+ | 1.6418 | 926 | 0.0253 |
1280
+ | 1.6436 | 927 | 0.0222 |
1281
+ | 1.6454 | 928 | 0.0102 |
1282
+ | 1.6472 | 929 | 0.0006 |
1283
+ | 1.6489 | 930 | 0.0021 |
1284
+ | 1.6507 | 931 | 0.0111 |
1285
+ | 1.6525 | 932 | 0.0087 |
1286
+ | 1.6543 | 933 | 0.0154 |
1287
+ | 1.6560 | 934 | 0.0225 |
1288
+ | 1.6578 | 935 | 0.0215 |
1289
+ | 1.6596 | 936 | 0.004 |
1290
+ | 1.6613 | 937 | 0.0041 |
1291
+ | 1.6631 | 938 | 0.0129 |
1292
+ | 1.6649 | 939 | 0.0356 |
1293
+ | 1.6667 | 940 | 0.0339 |
1294
+ | 1.6684 | 941 | 0.0185 |
1295
+ | 1.6702 | 942 | 0.0157 |
1296
+ | 1.6720 | 943 | 0.0585 |
1297
+ | 1.6738 | 944 | 0.0961 |
1298
+ | 1.6755 | 945 | 0.0031 |
1299
+ | 1.6773 | 946 | 0.004 |
1300
+ | 1.6791 | 947 | 0.0169 |
1301
+ | 1.6809 | 948 | 0.0555 |
1302
+ | 1.6826 | 949 | 0.0052 |
1303
+ | 1.6844 | 950 | 0.0065 |
1304
+ | 1.6862 | 951 | 0.126 |
1305
+ | 1.6879 | 952 | 0.0052 |
1306
+ | 1.6897 | 953 | 0.0045 |
1307
+ | 1.6915 | 954 | 0.0806 |
1308
+ | 1.6933 | 955 | 0.0513 |
1309
+ | 1.6950 | 956 | 0.1021 |
1310
+ | 1.6968 | 957 | 0.0233 |
1311
+ | 1.6986 | 958 | 0.0068 |
1312
+ | 1.7004 | 959 | 0.0019 |
1313
+ | 1.7021 | 960 | 0.0256 |
1314
+ | 1.7039 | 961 | 0.06 |
1315
+ | 1.7057 | 962 | 0.0452 |
1316
+ | 1.7074 | 963 | 0.102 |
1317
+ | 1.7092 | 964 | 0.0588 |
1318
+ | 1.7110 | 965 | 0.1179 |
1319
+ | 1.7128 | 966 | 0.0052 |
1320
+ | 1.7145 | 967 | 0.0545 |
1321
+ | 1.7163 | 968 | 0.0028 |
1322
+ | 1.7181 | 969 | 0.0215 |
1323
+ | 1.7199 | 970 | 0.0136 |
1324
+ | 1.7216 | 971 | 0.0204 |
1325
+ | 1.7234 | 972 | 0.0246 |
1326
+ | 1.7252 | 973 | 0.0024 |
1327
+ | 1.7270 | 974 | 0.1334 |
1328
+ | 1.7287 | 975 | 0.0071 |
1329
+ | 1.7305 | 976 | 0.001 |
1330
+ | 1.7323 | 977 | 0.0013 |
1331
+ | 1.7340 | 978 | 0.0065 |
1332
+ | 1.7358 | 979 | 0.009 |
1333
+ | 1.7376 | 980 | 0.0033 |
1334
+ | 1.7394 | 981 | 0.0055 |
1335
+ | 1.7411 | 982 | 0.0028 |
1336
+ | 1.7429 | 983 | 0.0052 |
1337
+ | 1.7447 | 984 | 0.0182 |
1338
+ | 1.7465 | 985 | 0.0459 |
1339
+ | 1.7482 | 986 | 0.0023 |
1340
+ | 1.75 | 987 | 0.0823 |
1341
+ | 1.7518 | 988 | 0.0758 |
1342
+ | 1.7535 | 989 | 0.0186 |
1343
+ | 1.7553 | 990 | 0.0198 |
1344
+ | 1.7571 | 991 | 0.0043 |
1345
+ | 1.7589 | 992 | 0.0077 |
1346
+ | 1.7606 | 993 | 0.0606 |
1347
+ | 1.7624 | 994 | 0.0368 |
1348
+ | 1.7642 | 995 | 0.0061 |
1349
+ | 1.7660 | 996 | 0.0142 |
1350
+ | 1.7677 | 997 | 0.0049 |
1351
+ | 1.7695 | 998 | 0.0074 |
1352
+ | 1.7713 | 999 | 0.093 |
1353
+ | 1.7730 | 1000 | 0.1129 |
1354
+ | 1.7748 | 1001 | 0.0008 |
1355
+ | 1.7766 | 1002 | 0.1378 |
1356
+ | 1.7784 | 1003 | 0.0116 |
1357
+ | 1.7801 | 1004 | 0.0024 |
1358
+ | 1.7819 | 1005 | 0.0235 |
1359
+ | 1.7837 | 1006 | 0.0134 |
1360
+ | 1.7855 | 1007 | 0.0087 |
1361
+ | 1.7872 | 1008 | 0.0445 |
1362
+ | 1.7890 | 1009 | 0.0089 |
1363
+ | 1.7908 | 1010 | 0.0395 |
1364
+ | 1.7926 | 1011 | 0.001 |
1365
+ | 1.7943 | 1012 | 0.0072 |
1366
+ | 1.7961 | 1013 | 0.215 |
1367
+ | 1.7979 | 1014 | 0.0008 |
1368
+ | 1.7996 | 1015 | 0.0047 |
1369
+ | 1.8014 | 1016 | 0.0195 |
1370
+ | 1.8032 | 1017 | 0.0041 |
1371
+ | 1.8050 | 1018 | 0.0934 |
1372
+ | 1.8067 | 1019 | 0.0008 |
1373
+ | 1.8085 | 1020 | 0.0302 |
1374
+ | 1.8103 | 1021 | 0.1175 |
1375
+ | 1.8121 | 1022 | 0.0717 |
1376
+ | 1.8138 | 1023 | 0.0009 |
1377
+ | 1.8156 | 1024 | 0.0016 |
1378
+ | 1.8174 | 1025 | 0.2146 |
1379
+ | 1.8191 | 1026 | 0.0139 |
1380
+ | 1.8209 | 1027 | 0.0067 |
1381
+ | 1.8227 | 1028 | 0.054 |
1382
+ | 1.8245 | 1029 | 0.0097 |
1383
+ | 1.8262 | 1030 | 0.0353 |
1384
+ | 1.8280 | 1031 | 0.029 |
1385
+ | 1.8298 | 1032 | 0.093 |
1386
+ | 1.8316 | 1033 | 0.0028 |
1387
+ | 1.8333 | 1034 | 0.1996 |
1388
+ | 1.8351 | 1035 | 0.0838 |
1389
+ | 1.8369 | 1036 | 0.0651 |
1390
+ | 1.8387 | 1037 | 0.3878 |
1391
+ | 1.8404 | 1038 | 0.0232 |
1392
+ | 1.8422 | 1039 | 0.0141 |
1393
+ | 1.8440 | 1040 | 0.0039 |
1394
+ | 1.8457 | 1041 | 0.0456 |
1395
+ | 1.8475 | 1042 | 0.0093 |
1396
+ | 1.8493 | 1043 | 0.0142 |
1397
+ | 1.8511 | 1044 | 0.0092 |
1398
+ | 1.8528 | 1045 | 0.0492 |
1399
+ | 1.8546 | 1046 | 0.0503 |
1400
+ | 1.8564 | 1047 | 0.035 |
1401
+ | 1.8582 | 1048 | 0.1337 |
1402
+ | 1.8599 | 1049 | 0.0038 |
1403
+ | 1.8617 | 1050 | 0.003 |
1404
+ | 1.8635 | 1051 | 0.0156 |
1405
+ | 1.8652 | 1052 | 0.0141 |
1406
+ | 1.8670 | 1053 | 0.1854 |
1407
+ | 1.8688 | 1054 | 0.0029 |
1408
+ | 1.8706 | 1055 | 0.0523 |
1409
+ | 1.8723 | 1056 | 0.0313 |
1410
+ | 1.8741 | 1057 | 0.0539 |
1411
+ | 1.8759 | 1058 | 0.0044 |
1412
+ | 1.8777 | 1059 | 0.1037 |
1413
+ | 1.8794 | 1060 | 0.1125 |
1414
+ | 1.8812 | 1061 | 0.031 |
1415
+ | 1.8830 | 1062 | 0.0187 |
1416
+ | 1.8848 | 1063 | 0.1745 |
1417
+ | 1.8865 | 1064 | 0.0048 |
1418
+ | 1.8883 | 1065 | 0.0138 |
1419
+ | 1.8901 | 1066 | 0.0112 |
1420
+ | 1.8918 | 1067 | 0.0005 |
1421
+ | 1.8936 | 1068 | 0.0133 |
1422
+ | 1.8954 | 1069 | 0.0411 |
1423
+ | 1.8972 | 1070 | 0.0063 |
1424
+ | 1.8989 | 1071 | 0.0007 |
1425
+ | 1.9007 | 1072 | 0.063 |
1426
+ | 1.9025 | 1073 | 0.343 |
1427
+ | 1.9043 | 1074 | 0.0014 |
1428
+ | 1.9060 | 1075 | 0.0194 |
1429
+ | 1.9078 | 1076 | 0.0085 |
1430
+ | 1.9096 | 1077 | 0.0067 |
1431
+ | 1.9113 | 1078 | 0.0204 |
1432
+ | 1.9131 | 1079 | 0.0094 |
1433
+ | 1.9149 | 1080 | 0.2565 |
1434
+ | 1.9167 | 1081 | 0.0456 |
1435
+ | 1.9184 | 1082 | 0.0695 |
1436
+ | 1.9202 | 1083 | 0.0047 |
1437
+ | 1.9220 | 1084 | 0.0246 |
1438
+ | 1.9238 | 1085 | 0.0033 |
1439
+ | 1.9255 | 1086 | 0.0121 |
1440
+ | 1.9273 | 1087 | 0.0148 |
1441
+ | 1.9291 | 1088 | 0.0058 |
1442
+ | 1.9309 | 1089 | 0.0019 |
1443
+ | 1.9326 | 1090 | 0.0012 |
1444
+ | 1.9344 | 1091 | 0.0093 |
1445
+ | 1.9362 | 1092 | 0.0081 |
1446
+ | 1.9379 | 1093 | 0.2302 |
1447
+ | 1.9397 | 1094 | 0.0187 |
1448
+ | 1.9415 | 1095 | 0.0013 |
1449
+ | 1.9433 | 1096 | 0.0545 |
1450
+ | 1.9450 | 1097 | 0.0121 |
1451
+ | 1.9468 | 1098 | 0.008 |
1452
+ | 1.9486 | 1099 | 0.0114 |
1453
+ | 1.9504 | 1100 | 0.0938 |
1454
+ | 1.9521 | 1101 | 0.0557 |
1455
+ | 1.9539 | 1102 | 0.0522 |
1456
+ | 1.9557 | 1103 | 0.2804 |
1457
+ | 1.9574 | 1104 | 0.0126 |
1458
+ | 1.9592 | 1105 | 0.0515 |
1459
+ | 1.9610 | 1106 | 0.0458 |
1460
+ | 1.9628 | 1107 | 0.0226 |
1461
+ | 1.9645 | 1108 | 0.009 |
1462
+ | 1.9663 | 1109 | 0.0154 |
1463
+ | 1.9681 | 1110 | 0.0059 |
1464
+ | 1.9699 | 1111 | 0.0013 |
1465
+ | 1.9716 | 1112 | 0.0274 |
1466
+ | 1.9734 | 1113 | 0.0194 |
1467
+ | 1.9752 | 1114 | 0.0015 |
1468
+ | 1.9770 | 1115 | 0.0013 |
1469
+ | 1.9787 | 1116 | 0.0509 |
1470
+ | 1.9805 | 1117 | 0.0038 |
1471
+ | 1.9823 | 1118 | 0.0144 |
1472
+ | 1.9840 | 1119 | 0.0009 |
1473
+ | 1.9858 | 1120 | 0.0161 |
1474
+ | 1.9876 | 1121 | 0.0494 |
1475
+ | 1.9894 | 1122 | 0.0037 |
1476
+ | 1.9911 | 1123 | 0.0084 |
1477
+ | 1.9929 | 1124 | 0.0304 |
1478
+ | 1.9947 | 1125 | 0.1233 |
1479
+ | 1.9965 | 1126 | 0.0128 |
1480
+ | 1.9982 | 1127 | 0.0031 |
1481
+ | 2.0 | 1128 | 0.0021 |
1482
+ | 2.0018 | 1129 | 0.0326 |
1483
+ | 2.0035 | 1130 | 0.0091 |
1484
+ | 2.0053 | 1131 | 0.0197 |
1485
+ | 2.0071 | 1132 | 0.0184 |
1486
+ | 2.0089 | 1133 | 0.0785 |
1487
+ | 2.0106 | 1134 | 0.0013 |
1488
+ | 2.0124 | 1135 | 0.0203 |
1489
+ | 2.0142 | 1136 | 0.0527 |
1490
+ | 2.0160 | 1137 | 0.2003 |
1491
+ | 2.0177 | 1138 | 0.0256 |
1492
+ | 2.0195 | 1139 | 0.0348 |
1493
+ | 2.0213 | 1140 | 0.0064 |
1494
+ | 2.0230 | 1141 | 0.0192 |
1495
+ | 2.0248 | 1142 | 0.0011 |
1496
+ | 2.0266 | 1143 | 0.0166 |
1497
+ | 2.0284 | 1144 | 0.0069 |
1498
+ | 2.0301 | 1145 | 0.0012 |
1499
+ | 2.0319 | 1146 | 0.0021 |
1500
+ | 2.0337 | 1147 | 0.0111 |
1501
+ | 2.0355 | 1148 | 0.0307 |
1502
+ | 2.0372 | 1149 | 0.0553 |
1503
+ | 2.0390 | 1150 | 0.0178 |
1504
+ | 2.0408 | 1151 | 0.0214 |
1505
+ | 2.0426 | 1152 | 0.0115 |
1506
+ | 2.0443 | 1153 | 0.0836 |
1507
+ | 2.0461 | 1154 | 0.0008 |
1508
+ | 2.0479 | 1155 | 0.002 |
1509
+ | 2.0496 | 1156 | 0.0013 |
1510
+ | 2.0514 | 1157 | 0.1271 |
1511
+ | 2.0532 | 1158 | 0.0169 |
1512
+ | 2.0550 | 1159 | 0.0895 |
1513
+ | 2.0567 | 1160 | 0.1264 |
1514
+ | 2.0585 | 1161 | 0.0126 |
1515
+ | 2.0603 | 1162 | 0.0033 |
1516
+ | 2.0621 | 1163 | 0.0056 |
1517
+ | 2.0638 | 1164 | 0.0095 |
1518
+ | 2.0656 | 1165 | 0.0561 |
1519
+ | 2.0674 | 1166 | 0.001 |
1520
+ | 2.0691 | 1167 | 0.0119 |
1521
+ | 2.0709 | 1168 | 0.0016 |
1522
+ | 2.0727 | 1169 | 0.0184 |
1523
+ | 2.0745 | 1170 | 0.1006 |
1524
+ | 2.0762 | 1171 | 0.2481 |
1525
+ | 2.0780 | 1172 | 0.0295 |
1526
+ | 2.0798 | 1173 | 0.0054 |
1527
+ | 2.0816 | 1174 | 0.0028 |
1528
+ | 2.0833 | 1175 | 0.0251 |
1529
+ | 2.0851 | 1176 | 0.0066 |
1530
+ | 2.0869 | 1177 | 0.0915 |
1531
+ | 2.0887 | 1178 | 0.0259 |
1532
+ | 2.0904 | 1179 | 0.0038 |
1533
+ | 2.0922 | 1180 | 0.0351 |
1534
+ | 2.0940 | 1181 | 0.0073 |
1535
+ | 2.0957 | 1182 | 0.0009 |
1536
+ | 2.0975 | 1183 | 0.0026 |
1537
+ | 2.0993 | 1184 | 0.0013 |
1538
+ | 2.1011 | 1185 | 0.1223 |
1539
+ | 2.1028 | 1186 | 0.0057 |
1540
+ | 2.1046 | 1187 | 0.0056 |
1541
+ | 2.1064 | 1188 | 0.004 |
1542
+ | 2.1082 | 1189 | 0.0064 |
1543
+ | 2.1099 | 1190 | 0.0951 |
1544
+ | 2.1117 | 1191 | 0.0328 |
1545
+ | 2.1135 | 1192 | 0.0422 |
1546
+ | 2.1152 | 1193 | 0.003 |
1547
+ | 2.1170 | 1194 | 0.0199 |
1548
+ | 2.1188 | 1195 | 0.0024 |
1549
+ | 2.1206 | 1196 | 0.0493 |
1550
+ | 2.1223 | 1197 | 0.0532 |
1551
+ | 2.1241 | 1198 | 0.0006 |
1552
+ | 2.1259 | 1199 | 0.0039 |
1553
+ | 2.1277 | 1200 | 0.0067 |
1554
+ | 2.1294 | 1201 | 0.0169 |
1555
+ | 2.1312 | 1202 | 0.0012 |
1556
+ | 2.1330 | 1203 | 0.002 |
1557
+ | 2.1348 | 1204 | 0.0787 |
1558
+ | 2.1365 | 1205 | 0.032 |
1559
+ | 2.1383 | 1206 | 0.0018 |
1560
+ | 2.1401 | 1207 | 0.0014 |
1561
+ | 2.1418 | 1208 | 0.0073 |
1562
+ | 2.1436 | 1209 | 0.0256 |
1563
+ | 2.1454 | 1210 | 0.0073 |
1564
+ | 2.1472 | 1211 | 0.0006 |
1565
+ | 2.1489 | 1212 | 0.0112 |
1566
+ | 2.1507 | 1213 | 0.0116 |
1567
+ | 2.1525 | 1214 | 0.0044 |
1568
+ | 2.1543 | 1215 | 0.0033 |
1569
+ | 2.1560 | 1216 | 0.0094 |
1570
+ | 2.1578 | 1217 | 0.0823 |
1571
+ | 2.1596 | 1218 | 0.0064 |
1572
+ | 2.1613 | 1219 | 0.0052 |
1573
+ | 2.1631 | 1220 | 0.0056 |
1574
+ | 2.1649 | 1221 | 0.0205 |
1575
+ | 2.1667 | 1222 | 0.0508 |
1576
+ | 2.1684 | 1223 | 0.0069 |
1577
+ | 2.1702 | 1224 | 0.0813 |
1578
+ | 2.1720 | 1225 | 0.022 |
1579
+ | 2.1738 | 1226 | 0.0254 |
1580
+ | 2.1755 | 1227 | 0.0119 |
1581
+ | 2.1773 | 1228 | 0.001 |
1582
+ | 2.1791 | 1229 | 0.0074 |
1583
+ | 2.1809 | 1230 | 0.0104 |
1584
+ | 2.1826 | 1231 | 0.0034 |
1585
+ | 2.1844 | 1232 | 0.003 |
1586
+ | 2.1862 | 1233 | 0.0026 |
1587
+ | 2.1879 | 1234 | 0.0005 |
1588
+ | 2.1897 | 1235 | 0.0021 |
1589
+ | 2.1915 | 1236 | 0.0034 |
1590
+ | 2.1933 | 1237 | 0.1037 |
1591
+ | 2.1950 | 1238 | 0.0067 |
1592
+ | 2.1968 | 1239 | 0.0349 |
1593
+ | 2.1986 | 1240 | 0.0699 |
1594
+ | 2.2004 | 1241 | 0.0201 |
1595
+ | 2.2021 | 1242 | 0.0079 |
1596
+ | 2.2039 | 1243 | 0.0335 |
1597
+ | 2.2057 | 1244 | 0.0465 |
1598
+ | 2.2074 | 1245 | 0.0144 |
1599
+ | 2.2092 | 1246 | 0.1061 |
1600
+ | 2.2110 | 1247 | 0.0078 |
1601
+ | 2.2128 | 1248 | 0.0027 |
1602
+ | 2.2145 | 1249 | 0.0019 |
1603
+ | 2.2163 | 1250 | 0.0019 |
1604
+ | 2.2181 | 1251 | 0.0109 |
1605
+ | 2.2199 | 1252 | 0.0029 |
1606
+ | 2.2216 | 1253 | 0.0032 |
1607
+ | 2.2234 | 1254 | 0.0039 |
1608
+ | 2.2252 | 1255 | 0.0082 |
1609
+ | 2.2270 | 1256 | 0.0157 |
1610
+ | 2.2287 | 1257 | 0.0027 |
1611
+ | 2.2305 | 1258 | 0.0025 |
1612
+ | 2.2323 | 1259 | 0.0301 |
1613
+ | 2.2340 | 1260 | 0.1471 |
1614
+ | 2.2358 | 1261 | 0.0021 |
1615
+ | 2.2376 | 1262 | 0.0087 |
1616
+ | 2.2394 | 1263 | 0.0109 |
1617
+ | 2.2411 | 1264 | 0.2735 |
1618
+ | 2.2429 | 1265 | 0.0109 |
1619
+ | 2.2447 | 1266 | 0.0042 |
1620
+ | 2.2465 | 1267 | 0.0301 |
1621
+ | 2.2482 | 1268 | 0.1398 |
1622
+ | 2.25 | 1269 | 0.0137 |
1623
+ | 2.2518 | 1270 | 0.0059 |
1624
+ | 2.2535 | 1271 | 0.0076 |
1625
+ | 2.2553 | 1272 | 0.0023 |
1626
+ | 2.2571 | 1273 | 0.0281 |
1627
+ | 2.2589 | 1274 | 0.0012 |
1628
+ | 2.2606 | 1275 | 0.0032 |
1629
+ | 2.2624 | 1276 | 0.0151 |
1630
+ | 2.2642 | 1277 | 0.0021 |
1631
+ | 2.2660 | 1278 | 0.001 |
1632
+ | 2.2677 | 1279 | 0.0258 |
1633
+ | 2.2695 | 1280 | 0.26 |
1634
+ | 2.2713 | 1281 | 0.0036 |
1635
+ | 2.2730 | 1282 | 0.0005 |
1636
+ | 2.2748 | 1283 | 0.0038 |
1637
+ | 2.2766 | 1284 | 0.0016 |
1638
+ | 2.2784 | 1285 | 0.0401 |
1639
+ | 2.2801 | 1286 | 0.0028 |
1640
+ | 2.2819 | 1287 | 0.008 |
1641
+ | 2.2837 | 1288 | 0.0077 |
1642
+ | 2.2855 | 1289 | 0.0133 |
1643
+ | 2.2872 | 1290 | 0.0578 |
1644
+ | 2.2890 | 1291 | 0.0008 |
1645
+ | 2.2908 | 1292 | 0.0051 |
1646
+ | 2.2926 | 1293 | 0.0036 |
1647
+ | 2.2943 | 1294 | 0.047 |
1648
+ | 2.2961 | 1295 | 0.0026 |
1649
+ | 2.2979 | 1296 | 0.0109 |
1650
+ | 2.2996 | 1297 | 0.0432 |
1651
+ | 2.3014 | 1298 | 0.0184 |
1652
+ | 2.3032 | 1299 | 0.0483 |
1653
+ | 2.3050 | 1300 | 0.0101 |
1654
+ | 2.3067 | 1301 | 0.0098 |
1655
+ | 2.3085 | 1302 | 0.0232 |
1656
+ | 2.3103 | 1303 | 0.0105 |
1657
+ | 2.3121 | 1304 | 0.0062 |
1658
+ | 2.3138 | 1305 | 0.0541 |
1659
+ | 2.3156 | 1306 | 0.0646 |
1660
+ | 2.3174 | 1307 | 0.0084 |
1661
+ | 2.3191 | 1308 | 0.0313 |
1662
+ | 2.3209 | 1309 | 0.0081 |
1663
+ | 2.3227 | 1310 | 0.012 |
1664
+ | 2.3245 | 1311 | 0.0036 |
1665
+ | 2.3262 | 1312 | 0.0518 |
1666
+ | 2.3280 | 1313 | 0.0018 |
1667
+ | 2.3298 | 1314 | 0.0044 |
1668
+ | 2.3316 | 1315 | 0.0495 |
1669
+ | 2.3333 | 1316 | 0.0733 |
1670
+ | 2.3351 | 1317 | 0.0478 |
1671
+ | 2.3369 | 1318 | 0.0408 |
1672
+ | 2.3387 | 1319 | 0.0657 |
1673
+ | 2.3404 | 1320 | 0.0007 |
1674
+ | 2.3422 | 1321 | 0.0286 |
1675
+ | 2.3440 | 1322 | 0.0145 |
1676
+ | 2.3457 | 1323 | 0.0028 |
1677
+ | 2.3475 | 1324 | 0.013 |
1678
+ | 2.3493 | 1325 | 0.0088 |
1679
+ | 2.3511 | 1326 | 0.0091 |
1680
+ | 2.3528 | 1327 | 0.2375 |
1681
+ | 2.3546 | 1328 | 0.0332 |
1682
+ | 2.3564 | 1329 | 0.1036 |
1683
+ | 2.3582 | 1330 | 0.0073 |
1684
+ | 2.3599 | 1331 | 0.0177 |
1685
+ | 2.3617 | 1332 | 0.0008 |
1686
+ | 2.3635 | 1333 | 0.011 |
1687
+ | 2.3652 | 1334 | 0.0228 |
1688
+ | 2.3670 | 1335 | 0.0183 |
1689
+ | 2.3688 | 1336 | 0.0011 |
1690
+ | 2.3706 | 1337 | 0.0178 |
1691
+ | 2.3723 | 1338 | 0.2155 |
1692
+ | 2.3741 | 1339 | 0.0048 |
1693
+ | 2.3759 | 1340 | 0.0854 |
1694
+ | 2.3777 | 1341 | 0.0146 |
1695
+ | 2.3794 | 1342 | 0.0034 |
1696
+ | 2.3812 | 1343 | 0.0105 |
1697
+ | 2.3830 | 1344 | 0.0181 |
1698
+ | 2.3848 | 1345 | 0.0126 |
1699
+ | 2.3865 | 1346 | 0.0555 |
1700
+ | 2.3883 | 1347 | 0.1284 |
1701
+ | 2.3901 | 1348 | 0.0071 |
1702
+ | 2.3918 | 1349 | 0.0007 |
1703
+ | 2.3936 | 1350 | 0.003 |
1704
+ | 2.3954 | 1351 | 0.013 |
1705
+ | 2.3972 | 1352 | 0.0023 |
1706
+ | 2.3989 | 1353 | 0.0083 |
1707
+ | 2.4007 | 1354 | 0.0217 |
1708
+ | 2.4025 | 1355 | 0.2555 |
1709
+ | 2.4043 | 1356 | 0.0171 |
1710
+ | 2.4060 | 1357 | 0.0028 |
1711
+ | 2.4078 | 1358 | 0.0796 |
1712
+ | 2.4096 | 1359 | 0.0054 |
1713
+ | 2.4113 | 1360 | 0.1113 |
1714
+ | 2.4131 | 1361 | 0.0291 |
1715
+ | 2.4149 | 1362 | 0.0186 |
1716
+ | 2.4167 | 1363 | 0.0248 |
1717
+ | 2.4184 | 1364 | 0.0281 |
1718
+ | 2.4202 | 1365 | 0.0386 |
1719
+ | 2.4220 | 1366 | 0.0049 |
1720
+ | 2.4238 | 1367 | 0.0023 |
1721
+ | 2.4255 | 1368 | 0.0229 |
1722
+ | 2.4273 | 1369 | 0.0043 |
1723
+ | 2.4291 | 1370 | 0.0351 |
1724
+ | 2.4309 | 1371 | 0.003 |
1725
+ | 2.4326 | 1372 | 0.0593 |
1726
+ | 2.4344 | 1373 | 0.0746 |
1727
+ | 2.4362 | 1374 | 0.1464 |
1728
+ | 2.4379 | 1375 | 0.0143 |
1729
+ | 2.4397 | 1376 | 0.0871 |
1730
+ | 2.4415 | 1377 | 0.034 |
1731
+ | 2.4433 | 1378 | 0.0096 |
1732
+ | 2.4450 | 1379 | 0.0507 |
1733
+ | 2.4468 | 1380 | 0.0248 |
1734
+ | 2.4486 | 1381 | 0.0131 |
1735
+ | 2.4504 | 1382 | 0.0123 |
1736
+ | 2.4521 | 1383 | 0.0303 |
1737
+ | 2.4539 | 1384 | 0.0013 |
1738
+ | 2.4557 | 1385 | 0.0902 |
1739
+ | 2.4574 | 1386 | 0.0375 |
1740
+ | 2.4592 | 1387 | 0.0978 |
1741
+ | 2.4610 | 1388 | 0.0151 |
1742
+ | 2.4628 | 1389 | 0.0139 |
1743
+ | 2.4645 | 1390 | 0.1327 |
1744
+ | 2.4663 | 1391 | 0.0248 |
1745
+ | 2.4681 | 1392 | 0.0086 |
1746
+ | 2.4699 | 1393 | 0.0006 |
1747
+ | 2.4716 | 1394 | 0.0153 |
1748
+ | 2.4734 | 1395 | 0.3766 |
1749
+ | 2.4752 | 1396 | 0.0252 |
1750
+ | 2.4770 | 1397 | 0.1675 |
1751
+ | 2.4787 | 1398 | 0.0018 |
1752
+ | 2.4805 | 1399 | 0.0526 |
1753
+ | 2.4823 | 1400 | 0.0191 |
1754
+ | 2.4840 | 1401 | 0.0077 |
1755
+ | 2.4858 | 1402 | 0.0011 |
1756
+ | 2.4876 | 1403 | 0.0261 |
1757
+ | 2.4894 | 1404 | 0.0028 |
1758
+ | 2.4911 | 1405 | 0.0012 |
1759
+ | 2.4929 | 1406 | 0.0011 |
1760
+ | 2.4947 | 1407 | 0.0015 |
1761
+ | 2.4965 | 1408 | 0.0183 |
1762
+ | 2.4982 | 1409 | 0.0376 |
1763
+ | 2.5 | 1410 | 0.0343 |
1764
+ | 2.5018 | 1411 | 0.0184 |
1765
+ | 2.5035 | 1412 | 0.0068 |
1766
+ | 2.5053 | 1413 | 0.0044 |
1767
+ | 2.5071 | 1414 | 0.04 |
1768
+ | 2.5089 | 1415 | 0.1035 |
1769
+ | 2.5106 | 1416 | 0.0018 |
1770
+ | 2.5124 | 1417 | 0.0578 |
1771
+ | 2.5142 | 1418 | 0.0039 |
1772
+ | 2.5160 | 1419 | 0.0002 |
1773
+ | 2.5177 | 1420 | 0.0022 |
1774
+ | 2.5195 | 1421 | 0.0005 |
1775
+ | 2.5213 | 1422 | 0.0064 |
1776
+ | 2.5230 | 1423 | 0.0239 |
1777
+ | 2.5248 | 1424 | 0.0209 |
1778
+ | 2.5266 | 1425 | 0.0026 |
1779
+ | 2.5284 | 1426 | 0.0019 |
1780
+ | 2.5301 | 1427 | 0.1177 |
1781
+ | 2.5319 | 1428 | 0.0007 |
1782
+ | 2.5337 | 1429 | 0.0173 |
1783
+ | 2.5355 | 1430 | 0.0744 |
1784
+ | 2.5372 | 1431 | 0.0078 |
1785
+ | 2.5390 | 1432 | 0.0025 |
1786
+ | 2.5408 | 1433 | 0.003 |
1787
+ | 2.5426 | 1434 | 0.0116 |
1788
+ | 2.5443 | 1435 | 0.0016 |
1789
+ | 2.5461 | 1436 | 0.0018 |
1790
+ | 2.5479 | 1437 | 0.0636 |
1791
+ | 2.5496 | 1438 | 0.0021 |
1792
+ | 2.5514 | 1439 | 0.0008 |
1793
+ | 2.5532 | 1440 | 0.0048 |
1794
+ | 2.5550 | 1441 | 0.0116 |
1795
+ | 2.5567 | 1442 | 0.0701 |
1796
+ | 2.5585 | 1443 | 0.003 |
1797
+ | 2.5603 | 1444 | 0.0051 |
1798
+ | 2.5621 | 1445 | 0.0265 |
1799
+ | 2.5638 | 1446 | 0.0297 |
1800
+ | 2.5656 | 1447 | 0.0062 |
1801
+ | 2.5674 | 1448 | 0.0193 |
1802
+ | 2.5691 | 1449 | 0.0042 |
1803
+ | 2.5709 | 1450 | 0.0075 |
1804
+ | 2.5727 | 1451 | 0.0033 |
1805
+ | 2.5745 | 1452 | 0.0078 |
1806
+ | 2.5762 | 1453 | 0.0662 |
1807
+ | 2.5780 | 1454 | 0.0103 |
1808
+ | 2.5798 | 1455 | 0.0138 |
1809
+ | 2.5816 | 1456 | 0.0049 |
1810
+ | 2.5833 | 1457 | 0.0023 |
1811
+ | 2.5851 | 1458 | 0.0463 |
1812
+ | 2.5869 | 1459 | 0.0539 |
1813
+ | 2.5887 | 1460 | 0.0112 |
1814
+ | 2.5904 | 1461 | 0.0088 |
1815
+ | 2.5922 | 1462 | 0.0096 |
1816
+ | 2.5940 | 1463 | 0.0063 |
1817
+ | 2.5957 | 1464 | 0.004 |
1818
+ | 2.5975 | 1465 | 0.0753 |
1819
+ | 2.5993 | 1466 | 0.0013 |
1820
+ | 2.6011 | 1467 | 0.0052 |
1821
+ | 2.6028 | 1468 | 0.0162 |
1822
+ | 2.6046 | 1469 | 0.0015 |
1823
+ | 2.6064 | 1470 | 0.0194 |
1824
+ | 2.6082 | 1471 | 0.0166 |
1825
+ | 2.6099 | 1472 | 0.0015 |
1826
+ | 2.6117 | 1473 | 0.0045 |
1827
+ | 2.6135 | 1474 | 0.0275 |
1828
+ | 2.6152 | 1475 | 0.192 |
1829
+ | 2.6170 | 1476 | 0.0113 |
1830
+ | 2.6188 | 1477 | 0.0165 |
1831
+ | 2.6206 | 1478 | 0.0037 |
1832
+ | 2.6223 | 1479 | 0.0031 |
1833
+ | 2.6241 | 1480 | 0.0522 |
1834
+ | 2.6259 | 1481 | 0.0251 |
1835
+ | 2.6277 | 1482 | 0.0531 |
1836
+ | 2.6294 | 1483 | 0.0165 |
1837
+ | 2.6312 | 1484 | 0.0087 |
1838
+ | 2.6330 | 1485 | 0.0982 |
1839
+ | 2.6348 | 1486 | 0.0813 |
1840
+ | 2.6365 | 1487 | 0.0023 |
1841
+ | 2.6383 | 1488 | 0.0656 |
1842
+ | 2.6401 | 1489 | 0.0128 |
1843
+ | 2.6418 | 1490 | 0.053 |
1844
+ | 2.6436 | 1491 | 0.0023 |
1845
+ | 2.6454 | 1492 | 0.0314 |
1846
+ | 2.6472 | 1493 | 0.0018 |
1847
+ | 2.6489 | 1494 | 0.2133 |
1848
+ | 2.6507 | 1495 | 0.02 |
1849
+ | 2.6525 | 1496 | 0.0149 |
1850
+ | 2.6543 | 1497 | 0.0045 |
1851
+ | 2.6560 | 1498 | 0.2646 |
1852
+ | 2.6578 | 1499 | 0.007 |
1853
+ | 2.6596 | 1500 | 0.0031 |
1854
+ | 2.6613 | 1501 | 0.0681 |
1855
+ | 2.6631 | 1502 | 0.0075 |
1856
+ | 2.6649 | 1503 | 0.0009 |
1857
+ | 2.6667 | 1504 | 0.0212 |
1858
+ | 2.6684 | 1505 | 0.0013 |
1859
+ | 2.6702 | 1506 | 0.0118 |
1860
+ | 2.6720 | 1507 | 0.0002 |
1861
+ | 2.6738 | 1508 | 0.0069 |
1862
+ | 2.6755 | 1509 | 0.0119 |
1863
+ | 2.6773 | 1510 | 0.0193 |
1864
+ | 2.6791 | 1511 | 0.0015 |
1865
+ | 2.6809 | 1512 | 0.0486 |
1866
+ | 2.6826 | 1513 | 0.156 |
1867
+ | 2.6844 | 1514 | 0.02 |
1868
+ | 2.6862 | 1515 | 0.0225 |
1869
+ | 2.6879 | 1516 | 0.0024 |
1870
+ | 2.6897 | 1517 | 0.0272 |
1871
+ | 2.6915 | 1518 | 0.0115 |
1872
+ | 2.6933 | 1519 | 0.0141 |
1873
+ | 2.6950 | 1520 | 0.0155 |
1874
+ | 2.6968 | 1521 | 0.0239 |
1875
+ | 2.6986 | 1522 | 0.0088 |
1876
+ | 2.7004 | 1523 | 0.0131 |
1877
+ | 2.7021 | 1524 | 0.0035 |
1878
+ | 2.7039 | 1525 | 0.3601 |
1879
+ | 2.7057 | 1526 | 0.0384 |
1880
+ | 2.7074 | 1527 | 0.0054 |
1881
+ | 2.7092 | 1528 | 0.0023 |
1882
+ | 2.7110 | 1529 | 0.0008 |
1883
+ | 2.7128 | 1530 | 0.0622 |
1884
+ | 2.7145 | 1531 | 0.0068 |
1885
+ | 2.7163 | 1532 | 0.005 |
1886
+ | 2.7181 | 1533 | 0.0466 |
1887
+ | 2.7199 | 1534 | 0.0025 |
1888
+ | 2.7216 | 1535 | 0.0124 |
1889
+ | 2.7234 | 1536 | 0.0059 |
1890
+ | 2.7252 | 1537 | 0.0068 |
1891
+ | 2.7270 | 1538 | 0.0418 |
1892
+ | 2.7287 | 1539 | 0.0108 |
1893
+ | 2.7305 | 1540 | 0.0112 |
1894
+ | 2.7323 | 1541 | 0.0085 |
1895
+ | 2.7340 | 1542 | 0.0032 |
1896
+ | 2.7358 | 1543 | 0.052 |
1897
+ | 2.7376 | 1544 | 0.0423 |
1898
+ | 2.7394 | 1545 | 0.0096 |
1899
+ | 2.7411 | 1546 | 0.0291 |
1900
+ | 2.7429 | 1547 | 0.0444 |
1901
+ | 2.7447 | 1548 | 0.0047 |
1902
+ | 2.7465 | 1549 | 0.0273 |
1903
+ | 2.7482 | 1550 | 0.0106 |
1904
+ | 2.75 | 1551 | 0.1274 |
1905
+ | 2.7518 | 1552 | 0.0065 |
1906
+ | 2.7535 | 1553 | 0.0033 |
1907
+ | 2.7553 | 1554 | 0.0012 |
1908
+ | 2.7571 | 1555 | 0.009 |
1909
+ | 2.7589 | 1556 | 0.1048 |
1910
+ | 2.7606 | 1557 | 0.0149 |
1911
+ | 2.7624 | 1558 | 0.0807 |
1912
+ | 2.7642 | 1559 | 0.0807 |
1913
+ | 2.7660 | 1560 | 0.0103 |
1914
+ | 2.7677 | 1561 | 0.038 |
1915
+ | 2.7695 | 1562 | 0.0068 |
1916
+ | 2.7713 | 1563 | 0.0529 |
1917
+ | 2.7730 | 1564 | 0.1415 |
1918
+ | 2.7748 | 1565 | 0.0168 |
1919
+ | 2.7766 | 1566 | 0.0016 |
1920
+ | 2.7784 | 1567 | 0.0017 |
1921
+ | 2.7801 | 1568 | 0.0223 |
1922
+ | 2.7819 | 1569 | 0.0137 |
1923
+ | 2.7837 | 1570 | 0.0051 |
1924
+ | 2.7855 | 1571 | 0.0054 |
1925
+ | 2.7872 | 1572 | 0.0206 |
1926
+ | 2.7890 | 1573 | 0.0465 |
1927
+ | 2.7908 | 1574 | 0.0031 |
1928
+ | 2.7926 | 1575 | 0.0006 |
1929
+ | 2.7943 | 1576 | 0.0047 |
1930
+ | 2.7961 | 1577 | 0.0086 |
1931
+ | 2.7979 | 1578 | 0.0443 |
1932
+ | 2.7996 | 1579 | 0.0099 |
1933
+ | 2.8014 | 1580 | 0.0878 |
1934
+ | 2.8032 | 1581 | 0.0042 |
1935
+ | 2.8050 | 1582 | 0.1406 |
1936
+ | 2.8067 | 1583 | 0.0034 |
1937
+ | 2.8085 | 1584 | 0.0085 |
1938
+ | 2.8103 | 1585 | 0.0118 |
1939
+ | 2.8121 | 1586 | 0.0182 |
1940
+ | 2.8138 | 1587 | 0.0013 |
1941
+ | 2.8156 | 1588 | 0.0049 |
1942
+ | 2.8174 | 1589 | 0.0104 |
1943
+ | 2.8191 | 1590 | 0.0068 |
1944
+ | 2.8209 | 1591 | 0.0017 |
1945
+ | 2.8227 | 1592 | 0.004 |
1946
+ | 2.8245 | 1593 | 0.0048 |
1947
+ | 2.8262 | 1594 | 0.0253 |
1948
+ | 2.8280 | 1595 | 0.0672 |
1949
+ | 2.8298 | 1596 | 0.0008 |
1950
+ | 2.8316 | 1597 | 0.0086 |
1951
+ | 2.8333 | 1598 | 0.01 |
1952
+ | 2.8351 | 1599 | 0.0165 |
1953
+ | 2.8369 | 1600 | 0.1176 |
1954
+ | 2.8387 | 1601 | 0.0025 |
1955
+ | 2.8404 | 1602 | 0.0068 |
1956
+ | 2.8422 | 1603 | 0.0829 |
1957
+ | 2.8440 | 1604 | 0.0037 |
1958
+ | 2.8457 | 1605 | 0.0347 |
1959
+ | 2.8475 | 1606 | 0.0046 |
1960
+ | 2.8493 | 1607 | 0.0129 |
1961
+ | 2.8511 | 1608 | 0.0325 |
1962
+ | 2.8528 | 1609 | 0.0039 |
1963
+ | 2.8546 | 1610 | 0.0414 |
1964
+ | 2.8564 | 1611 | 0.102 |
1965
+ | 2.8582 | 1612 | 0.0935 |
1966
+ | 2.8599 | 1613 | 0.0031 |
1967
+ | 2.8617 | 1614 | 0.0125 |
1968
+ | 2.8635 | 1615 | 0.0011 |
1969
+ | 2.8652 | 1616 | 0.0041 |
1970
+ | 2.8670 | 1617 | 0.0411 |
1971
+ | 2.8688 | 1618 | 0.0029 |
1972
+ | 2.8706 | 1619 | 0.1064 |
1973
+ | 2.8723 | 1620 | 0.0229 |
1974
+ | 2.8741 | 1621 | 0.0142 |
1975
+ | 2.8759 | 1622 | 0.0847 |
1976
+ | 2.8777 | 1623 | 0.0743 |
1977
+ | 2.8794 | 1624 | 0.0019 |
1978
+ | 2.8812 | 1625 | 0.0194 |
1979
+ | 2.8830 | 1626 | 0.0019 |
1980
+ | 2.8848 | 1627 | 0.0143 |
1981
+ | 2.8865 | 1628 | 0.0011 |
1982
+ | 2.8883 | 1629 | 0.0144 |
1983
+ | 2.8901 | 1630 | 0.154 |
1984
+ | 2.8918 | 1631 | 0.0092 |
1985
+ | 2.8936 | 1632 | 0.0086 |
1986
+ | 2.8954 | 1633 | 0.0052 |
1987
+ | 2.8972 | 1634 | 0.1818 |
1988
+ | 2.8989 | 1635 | 0.0022 |
1989
+ | 2.9007 | 1636 | 0.003 |
1990
+ | 2.9025 | 1637 | 0.0021 |
1991
+ | 2.9043 | 1638 | 0.0091 |
1992
+ | 2.9060 | 1639 | 0.0369 |
1993
+ | 2.9078 | 1640 | 0.0007 |
1994
+ | 2.9096 | 1641 | 0.007 |
1995
+ | 2.9113 | 1642 | 0.0071 |
1996
+ | 2.9131 | 1643 | 0.0345 |
1997
+ | 2.9149 | 1644 | 0.0068 |
1998
+ | 2.9167 | 1645 | 0.0063 |
1999
+ | 2.9184 | 1646 | 0.0039 |
2000
+ | 2.9202 | 1647 | 0.0262 |
2001
+ | 2.9220 | 1648 | 0.0653 |
2002
+ | 2.9238 | 1649 | 0.0144 |
2003
+ | 2.9255 | 1650 | 0.014 |
2004
+ | 2.9273 | 1651 | 0.0014 |
2005
+ | 2.9291 | 1652 | 0.011 |
2006
+ | 2.9309 | 1653 | 0.0104 |
2007
+ | 2.9326 | 1654 | 0.0073 |
2008
+ | 2.9344 | 1655 | 0.0245 |
2009
+ | 2.9362 | 1656 | 0.1735 |
2010
+ | 2.9379 | 1657 | 0.0188 |
2011
+ | 2.9397 | 1658 | 0.0149 |
2012
+ | 2.9415 | 1659 | 0.0186 |
2013
+ | 2.9433 | 1660 | 0.0397 |
2014
+ | 2.9450 | 1661 | 0.0529 |
2015
+ | 2.9468 | 1662 | 0.0345 |
2016
+ | 2.9486 | 1663 | 0.0121 |
2017
+ | 2.9504 | 1664 | 0.0802 |
2018
+ | 2.9521 | 1665 | 0.0051 |
2019
+ | 2.9539 | 1666 | 0.0734 |
2020
+ | 2.9557 | 1667 | 0.0739 |
2021
+ | 2.9574 | 1668 | 0.0191 |
2022
+ | 2.9592 | 1669 | 0.0362 |
2023
+ | 2.9610 | 1670 | 0.007 |
2024
+ | 2.9628 | 1671 | 0.0064 |
2025
+ | 2.9645 | 1672 | 0.2386 |
2026
+ | 2.9663 | 1673 | 0.0224 |
2027
+ | 2.9681 | 1674 | 0.0007 |
2028
+ | 2.9699 | 1675 | 0.0019 |
2029
+ | 2.9716 | 1676 | 0.0333 |
2030
+ | 2.9734 | 1677 | 0.0067 |
2031
+ | 2.9752 | 1678 | 0.0052 |
2032
+ | 2.9770 | 1679 | 0.0028 |
2033
+ | 2.9787 | 1680 | 0.0462 |
2034
+ | 2.9805 | 1681 | 0.0072 |
2035
+ | 2.9823 | 1682 | 0.0023 |
2036
+ | 2.9840 | 1683 | 0.01 |
2037
+ | 2.9858 | 1684 | 0.0208 |
2038
+ | 2.9876 | 1685 | 0.0189 |
2039
+ | 2.9894 | 1686 | 0.002 |
2040
+ | 2.9911 | 1687 | 0.0021 |
2041
+ | 2.9929 | 1688 | 0.0479 |
2042
+ | 2.9947 | 1689 | 0.0159 |
2043
+ | 2.9965 | 1690 | 0.0618 |
2044
+ | 2.9982 | 1691 | 0.0267 |
2045
+ | 3.0 | 1692 | 0.3215 |
2046
+
2047
+ </details>
2048
+
2049
+ ### Framework Versions
2050
+ - Python: 3.10.14
2051
+ - Sentence Transformers: 5.1.1
2052
+ - Transformers: 4.56.2
2053
+ - PyTorch: 2.8.0+cu128
2054
+ - Accelerate: 1.10.1
2055
+ - Datasets: 4.1.1
2056
+ - Tokenizers: 0.22.1
2057
+
2058
+ ## Citation
2059
+
2060
+ ### BibTeX
2061
+
2062
+ #### Sentence Transformers
2063
+ ```bibtex
2064
+ @inproceedings{reimers-2019-sentence-bert,
2065
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
2066
+ author = "Reimers, Nils and Gurevych, Iryna",
2067
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
2068
+ month = "11",
2069
+ year = "2019",
2070
+ publisher = "Association for Computational Linguistics",
2071
+ url = "https://arxiv.org/abs/1908.10084",
2072
+ }
2073
+ ```
2074
+
2075
+ #### MultipleNegativesRankingLoss
2076
+ ```bibtex
2077
+ @misc{henderson2017efficient,
2078
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
2079
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
2080
+ year={2017},
2081
+ eprint={1705.00652},
2082
+ archivePrefix={arXiv},
2083
+ primaryClass={cs.CL}
2084
+ }
2085
+ ```
2086
+
2087
+ <!--
2088
+ ## Glossary
2089
+
2090
+ *Clearly define terms in order to be accessible across audiences.*
2091
+ -->
2092
+
2093
+ <!--
2094
+ ## Model Card Authors
2095
+
2096
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
2097
+ -->
2098
+
2099
+ <!--
2100
+ ## Model Card Contact
2101
+
2102
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
2103
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.56.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.1",
4
+ "transformers": "4.56.2",
5
+ "pytorch": "2.8.0+cu128"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d12e7f13e6bea43a8c077a687435bbc447f5b1dae43841c197c0974cf1104450
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff