sophtang commited on
Commit
5565829
·
verified ·
1 Parent(s): e3c1f49

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: cc-by-nc-nd-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-nd-4.0
3
+ ---
4
+ <div align="center">
5
+ <img src="branchsbm/branchsbm.png" alt="branchsbm" width="1000" height="300">
6
+ </div>
7
+
8
+ <h1 align='center'>Branched Schrödinger Bridge Matching</h1>
9
+
10
+ <div align="center">
11
+ <a href="https://sophtang.github.io/" target="_blank">Sophia Tang</a><sup>1</sup>&ensp;<b>&middot;</b>&ensp;
12
+ <a href="" target="_blank">Yinuo Zhang</a><sup>2</sup>&ensp;<b>&middot;</b>&ensp;
13
+ <a href="https://www.alextong.net/" target="_blank">Alexander Tong</a><sup>3</sup>&ensp;<b>&middot;</b>&ensp;
14
+ <a href="https://www.chatterjeelab.com/" target="_blank">Pranam Chatterjee</a><sup>4<sup>
15
+ <br>
16
+ <p style="font-size: 16px;">
17
+ <sup>1</sup> University of Pennsylvania &emsp;
18
+ <sup>2</sup> Duke-NUS Medical School &emsp;
19
+ <sup>3</sup> Mila, Quebec AI Institute
20
+ &emsp; <sup>4</sup> Duke University
21
+ </p>
22
+ </div>
23
+
24
+ <div align="center">
25
+
26
+ [![arxiv](https://img.shields.io/badge/arxiv-blue)](https://arxiv.org/abs/2506.09007)
27
+
28
+ </div>
29
+
30
+ Predicting the intermediate trajectories between an initial and target distribution is a central problem in generative modeling. Existing approaches, such as flow matching and Schrödinger Bridge Matching, effectively learn mappings between two distributions by modeling a single stochastic path. However, these methods are inherently limited to unimodal transitions and cannot capture branched or divergent evolution from a common origin to multiple distinct outcomes. To address this, we introduce **Branched Schrödinger Bridge Matching (BranchSBM)**, a novel framework that learns branched Schrödinger bridges. BranchSBM parameterizes multiple time-dependent velocity fields and growth processes, enabling the representation of population-level divergence into multiple terminal distributions. We show that BranchSBM is not only more expressive but also essential for tasks involving multi-path surface navigation, modeling cell fate bifurcations from homogeneous progenitor states, and simulating diverging cellular responses to perturbations.
31
+
32
+ # Experiments
33
+ ### 1. Branched LiDAR Surface Navigation
34
+ First, we evaluate BranchSBM for navigating branched paths along the surface of a 3-dimensional LiDAR manifold, from an initial distribution to two distinct target distributions.
35
+
36
+ <div align="center">
37
+ <img src="branchsbm/lidar.png" alt="branchsbm" width="900" height="300">
38
+ </div>
39
+ <p align="center"><em>Figure 3: Application of BranchSBM on Learning Branched Paths on a LiDAR Manifold.</em></p>
40
+
41
+ ### 2. Modeling Differentiating Single-Cell Population Dynamics
42
+ BranchSBM is uniquely positioned to model single-cell population dynamics where a homogeneous cell population (e.g., progenitor cells) differentiates into several distinct subpopulation branches, each of which independently undergoes growth dynamics. We demonstrate this capability on mouse hematopoiesis data.
43
+
44
+ <div align="center">
45
+ <img src="branchsbm/mouse.png" alt="branchsbm" width="900" height="300">
46
+ </div>
47
+ <p align="center"><em>Figure 4: Application of BranchSBM on Modeling Differentiating Single-Cell Population Dynamics.</em></p>
48
+
49
+ ### 3. Modeling Drug-Induced Perturbation Resposes
50
+ Predicting the effects of perturbation on cell state dynamics is a crucial problem for therapeutic design. In this experiment, we leverage BranchSBM to model the trajectories of a single cell line from a single homogeneous state to multiple heterogeneous states after a drug-induced perturbation. We demonstrate that BranchSBM is capable of capturing the dynamics of high-dimensional gene expression data and learning branched trajectories that accurately reconstruct diverging perturbed cell populations.
51
+
52
+ First, we modeled two branches to two divergent subpopulations in the Clonidine-perturbed cells from the initial control DMSO-treated cells with BranchSBM and compared with single-branch SBM.
53
+
54
+ <div align="center">
55
+ <img src="branchsbm/clonidine.png" alt="branchsbm" width="900" height="300">
56
+ </div>
57
+ <p align="center"><em>Figure 5: Results for Clonidine Perturbation Modeling with BranchSBM.</em></p>
58
+
59
+ Finally, we used BranchSBM to model three branched trajectories in the Trametinib-perturbed cells from the initial control DMSO-treated cells.
60
+
61
+ <div align="center">
62
+ <img src="branchsbm/trametinib.png" alt="branchsbm" width="900" height="300">
63
+ </div>
64
+ <p align="center"><em>Figure 6: Results for Trametinib Perturbation Modeling with BranchSBM.</em></p>
65
+
66
+ ## Citation
67
+ If you find this repository helpful for your publications, please consider citing our paper:
68
+ ```
69
+ @article{tang2025branchsbm,
70
+ title={Branched Schrödinger Bridge Matching},
71
+ author={Tang, Sophia and Zhang, Yinuo and Tong, Alexander and Chatterjee, Pranam},
72
+ journal={arXiv preprint arXiv:2506.09007},
73
+ year={2025}
74
+ }
75
+ ```