--- license: mit language: - en metrics: - accuracy library_name: sklearn tags: - Traffic - ML - Random-forest - Classification - Scikit-learn --- # Traffic Prediction Model ## Model Description This model is a **Random Forest Classifier** trained to predict **traffic conditions** based on various input features. It helps estimate traffic congestion levels using structured data such as **time of day, weather, and historical patterns**. ## Training Details - **Algorithm**: Random Forest Classifier - **Dataset**: Custom traffic dataset - **Preprocessing**: Label encoding for categorical variables - **Framework**: scikit-learn ## How to Use To use this model, install the required libraries and download the model from Hugging Face. To load and use the model: ```python import joblib from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="traffic_classifier.pkl") encoder_path = hf_hub_download(repo_id="AhaseesAI/traffic-prediction", filename="target_encoder.pkl") # Load model model = joblib.load(model_path) target_encoder = joblib.load(encoder_path) # Example prediction sample_data = [[value1, value2, value3, ...]] # Replace with actual feature values prediction = model.predict(sample_data) # Convert prediction to original label predicted_label = target_encoder.inverse_transform(prediction) print(f"Predicted Traffic Status: {predicted_label[0]}")