Update processing_colinternvl2.py
Browse files- processing_colinternvl2.py +58 -0
processing_colinternvl2.py
CHANGED
|
@@ -16,6 +16,25 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 16 |
from .conversation import get_conv_template
|
| 17 |
from transformers import BatchFeature, ProcessorMixin
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin):
|
| 20 |
"""
|
| 21 |
Processor for ColInternVL2.
|
|
@@ -205,3 +224,42 @@ class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin):
|
|
| 205 |
patch_size: int,
|
| 206 |
) -> Tuple[int, int]:
|
| 207 |
raise NotImplementedError("This method is not implemented for ColInternVL2.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
from .conversation import get_conv_template
|
| 17 |
from transformers import BatchFeature, ProcessorMixin
|
| 18 |
|
| 19 |
+
def get_torch_device(device: str = "auto") -> str:
|
| 20 |
+
"""
|
| 21 |
+
Returns the device (string) to be used by PyTorch.
|
| 22 |
+
|
| 23 |
+
`device` arg defaults to "auto" which will use:
|
| 24 |
+
- "cuda:0" if available
|
| 25 |
+
- else "mps" if available
|
| 26 |
+
- else "cpu".
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
if device == "auto":
|
| 30 |
+
if torch.cuda.is_available():
|
| 31 |
+
device = "cuda:0"
|
| 32 |
+
elif torch.backends.mps.is_available(): # for Apple Silicon
|
| 33 |
+
device = "mps"
|
| 34 |
+
else:
|
| 35 |
+
device = "cpu"
|
| 36 |
+
return device
|
| 37 |
+
|
| 38 |
class ColInternVL2Processor(BaseVisualRetrieverProcessor, ProcessorMixin):
|
| 39 |
"""
|
| 40 |
Processor for ColInternVL2.
|
|
|
|
| 224 |
patch_size: int,
|
| 225 |
) -> Tuple[int, int]:
|
| 226 |
raise NotImplementedError("This method is not implemented for ColInternVL2.")
|
| 227 |
+
|
| 228 |
+
def score_multi_vector(
|
| 229 |
+
self,
|
| 230 |
+
qs: List[torch.Tensor],
|
| 231 |
+
ps: List[torch.Tensor],
|
| 232 |
+
batch_size: int = 128,
|
| 233 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 234 |
+
) -> torch.Tensor:
|
| 235 |
+
"""
|
| 236 |
+
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
|
| 237 |
+
"""
|
| 238 |
+
device = device or get_torch_device("auto")
|
| 239 |
+
|
| 240 |
+
if len(qs) == 0:
|
| 241 |
+
raise ValueError("No queries provided")
|
| 242 |
+
if len(ps) == 0:
|
| 243 |
+
raise ValueError("No passages provided")
|
| 244 |
+
|
| 245 |
+
scores_list: List[torch.Tensor] = []
|
| 246 |
+
|
| 247 |
+
for i in range(0, len(qs), batch_size):
|
| 248 |
+
scores_batch = []
|
| 249 |
+
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).float().to(
|
| 250 |
+
device
|
| 251 |
+
)
|
| 252 |
+
for j in range(0, len(ps), batch_size):
|
| 253 |
+
ps_batch = torch.nn.utils.rnn.pad_sequence(
|
| 254 |
+
ps[j : j + batch_size], batch_first=True, padding_value=0
|
| 255 |
+
).float().to(device)
|
| 256 |
+
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
|
| 257 |
+
scores_batch = torch.cat(scores_batch, dim=1).cpu()
|
| 258 |
+
scores_list.append(scores_batch)
|
| 259 |
+
|
| 260 |
+
scores = torch.cat(scores_list, dim=0)
|
| 261 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
| 262 |
+
|
| 263 |
+
scores = scores.to(torch.float32)
|
| 264 |
+
return scores
|
| 265 |
+
|